

Updates on Magnetics for 10GBase-T

Thuyen Dinh LAN Products Division

IEEE802.3 Interim Meeting Vancouver B.C. January 12-15, 2004

Pulse T. Dinh

- Study of downward (10/100/1000) compatibility in magnetics
 - Existing standard specifications
 - Actual BER test in a 10/100/1000 system
- Design examples and test results
 - Determine practical bandwidth for magnetics with and without a common-mode choke

Pulse T. Din

Backward Compatibility

- 10Base-T has no requirement for inductance on magnetics.
- 100Base-Tx magnetics open-circuit inductance (OCL) spec is 350 uH minimum with 8 mA of DC bias (Clause 9.1.7, ANSI standard X3.263:199X for FDDI-TP-PMD). This requirement may be removed shortly.
- Typically, 10/100 magnetics upper bandwidth (3dB) is about 150 MHz - 250 MHz.
- Since 10GBase-T magnetics needs much wider bandwidth (>500 MHz), inductance has to be lowered to reduce parasitic elements.

Backward Compatibility (cont'd)

- Two 10/100/1000 NIC cards tested using 10-dB cat-5 cable (approximately 140 meters in length).
- Transmission tests done with different data patterns, packet sizes, and speeds.
- As OCL of the magnetics was reduced to about 100 uH, 10 Mbps and 100 Mbps started showing errors.
- No error was observed with 1 Gbps operation.

10GBase-T magnetics design example1

- Characteristics:
 - 1CT:1CT turns ratio (center tap on each side).
 - Insulation to meet 1500 VAC.
 - OCL of about 140 uH.
 - Wound on small core made out of common high-permeability ferrite material.
 - No common-mode choke.
 - Sample tested with direct connections to package from analyzer SMB connectors.

TEST SET UP

Pulse

T. Dinh

Test results, example 1

10GBTT2 (Transformer only)

10GBase-T magnetics design example2

- Characteristics:
 - Same as in design example 1, but with a common-mode choke of same design as those in typical 10/100/1000 magnetics.
 - Same test setup.

Test results, example 2

10GBTT3 (with CMC)

- To be downward compatible with 10/100/1000
 Ethernet, magnetics must have more than 100 uH
 of OCL (open-circuit inductance). Also, IEEE
 must waive or remove OCL requirement from
 current standard.
- Bandwidth (3dB) from less than 100 kHz to more than 500 MHz is feasible with transformer alone, but upper bandwidth may be reduced to less than 500 MHz with common-mode chokes.
- Since the numbers of turns will be small, odd turns ratios such as 1:1.4, 1:1.15, etc. may be difficult to implement.

Pulse T. Din