EPON Power Overview

802.3av Power Ad-hoc

ONU and **OLT** power

Ryan Hirth 7/24/08

1Gbps Idle ONU

- Single 1000Base-TX UNI port
- No user traffic
- ONU registered with MPCP and OAM active

10Gbps Idle ONU

- Single 1000Base-TX UNI port
- No user traffic
- ONU registered and MPCP and OAM active

1Gbps Idle OLT

- Single 1000Base-TX NNI port
- No user traffic
- 32 ONUs registered and MPCP and OAM active

10Gbps Idle OLT

- Single XAUI NNI port
- No user traffic
- 32 ONUs registered and MPCP and OAM active

Conclusions

- Results based on measured data where possible
 - 10Gbps are based on data sheet and estimated results
- UNI port consumes significant power
 - Energy Efficient Ethernet should reduce this by ~50%
- O/E Tx Power is significant even when not transmitting
 - Powering down laser provides an opportunity to reduce power
- 1Gbps -> 10Gbps migration will increase power by 50% to 150%
- Digital logic dominates power at OLT
 - Idle periods are difficult to isolate with 32+ ONUs registered
 - Power reduction may be best served by silicon process technology

