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Outline

• Introduction: 
• Data rate evolution 
• Transmission systems 

• Nonlinear fiber impairments  
• Stimulated Brillouin Scattering (SBS)
• Stimulated Raman Scattering (SRS)
• Self phase modulation (SPM)
• Cross phase modulation (XPM)
• Four Wave Mixing (FWM)
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Line Rate Evolution

• Explosion of interest to fiber nonlinearities in the fiber optic system 
started with introduction of 10 Gb/s systems due to necessity to use 
higher optical power for higher bit rates 
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Where Fiber Nonlinearities Were Studied?
Long Haul WDM Transmission System

• Attributes of the long haul (LH) WDM transmission system
– Link length 500-1500 km with span lengths of 80-100 km
– Bit Rate 10 Gb/s, 100 or 50 GHz channel spacing on ITU grid
– C band (1530 – 1565 nm) and L band (1570-1625 nm) 
– Erbium Doped Fiber Amplifier (EDFA) with 2 stages for DCM

RX
Optical 

Amplifier 

Fiber/Cable

Terminal EquipmentTerminal Equipment

D
em

u
xM

u
x

Span 
80-100 km

Link 500-1500 km

TX

DCM

2nd stage1st stage



Corning Optical Fiber
6

Passive Optical Networks
Lower Nonlinearity due to Shorter Length
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• Attributes of PONs
– Link length up to 20 km, split ratio up to 64
– Bit rates up to 2.5 Gb/s (10 Gb/s is considered)
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Nonlinearities Fiber Impairments 

Nonlinearity System 
impacted How it impact the system

Stimulated Brillouin 
Scattering PON

Limits launched optical power, increases noise.
Impairs video signal through CNR, CSO and 

CTB degradation

Stimulated Raman 
scattering

LH (WDM), 
PON

Transfers power from blue channel to red 
channels i.e. effectively increasing attenuation 

for blue channels. Raman Xtalk in PONs.

Cross-phase 
modulation LH (WDM)

Distortion of the phase of adjacent transmitted 
channel that is converted into amplitude 

distortion.

Self-phase modulation LH Distortion of the phase of transmitted optical 
pulse that is converted into amplitude distortion

Four wave Mixing LH (WDM) Generation of the FWM tones that coincide with 
other channels. Appears like nonlinear noise 



Stimulated Brillouin Scattering

(SBS) 
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Experimental Observation of SBS
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• Brillouin scattering occurs due to interaction of light with 
acoustic waves

• How it originates:  
thermal motion of molecules  

pressure fluctuations (acoustic waves) 

refractive index variations 

light scattering

• Most efficient scattering occurs in a backward direction and 
induces a Doppler frequency shift of the scattered light

Spontaneous Brillouin Scattering
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Stimulated Brillouin Scattering

• Backscattered light (Stokes wave) from acoustic noise interferes with the input 
optical wave

• An acoustic wave is generated due to electrostriction (increase in the material 
density in regions of high optical intensity)

• The acoustic wave further stimulates Brillouin scattering
• Brillouin scattering reinforces the acoustic wave and so on...

input optical wave

backscattered 
(Stokes) wave

input + reflected 
interference

acoustic wave

electrostriction
⇓
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SBS limits maximum launch power to the fiber
• To maximize the number of network users or/and transmission 

distance or bit rate high input optical power is required

Analog Transmitter
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SBS Impact on Digital Transmission
• Creates additional noise from 

forward scattered Stocks 
component

Misc Margin
RX Sensitivity 

(e.g. -28 dBm for 622 Mb/s)
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SBS Threshold Enhancement: Dithering

SBS threshold 
is ~7 dBm

Threshold is 
~17dBm
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• Broadening linewidth spreads optical power across a wider spectrum, so peak 
power is below threshold  but total power is increased 

• “State of the art” externally-modulated transmitters typically have maximum 
SBS-limited output power of ~17 dBm. 

• Broadening linewidth spreads optical power across a wider spectrum, so peak 
power is below threshold  but total power is increased 

• “State of the art” externally-modulated transmitters typically have maximum 
SBS-limited output power of ~17 dBm. 
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SBS Threshold Enhancement: Fiber Design
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Summary: Stimulated Brillouin Scattering
• SBS limits power of the digital signal launched in the fiber 

and thus limits max transmission distance or split ratio
– Major degradation is due to increased insertion loss of fiber 

and lower optical power at the Rx

• SBS can be mitigated by 
– Dithering (spectral broadening of the launched signal)
– Using fibers with increased SBS threshold

• Analog signal is much more sensitive to SBS because 
– Requires high power at the Rx and launched power
– CNR and CSO degrade with the onset of SBS



Stimulated Raman Scattering

(SRS)



Corning Optical Fiber
19

Experimental Observation of SRS
Raman pump (contra-)optical fiber 
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Raman Amplification
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• Amplification by stimulated Raman scattering became 
feasible due to progress in semiconductor pumps
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SRS Induced Impairments in WDM Systems 
Signal to Signal Interaction (Raman Tilt)

• SRS transfers energy from the signals in the blue part of the WDM 
spectrum to the signal in the red part as channel

• Appears as a increased “tilt” in fiber attenuation, blue channel
experience excessive OSNR loss, can be mitigated by pre-emphasis 
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Raman Crosstalk in PONs (ITU-T G.983/984) 
Wavelength Assignment
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•Low power digital signal 
acts as Raman pump for 
high power analog signal

•Raman interaction causes 
two penalties

•Power depletion of 
digital signal

•CNR degradation of 
analog signal

Raman Interaction

Digital signal
at 1490 nm

Analog signals 
at 1550nm

Raman Gain
Spectrum

CNR Degradation

Pump depletion
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Pump depletion: theoretical model

• Use undepleted signal approximation
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• Digital signal suffers from loss of power as the analog 
signal power is increased

• Effect occurs at current launched analog power levels 
(~18 dBm) and gets worse at stronger power levels

• Overcome by launching higher power digital signal

Signal Depletion
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CNR degradation

• CNR penalty decreases with subcarrier frequency and bit rate
• Mitigated by pre-emphasis of subcarriers and higher bit rates

SMF NRZ, Pdigital = 0 dBm, L=10.6km
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Summary: Raman Cross-Talk Penalties
• Raman amplifier based on SRS is employed in LH system 

to boost OSNR and extend the system reach  

• SRS between individual channels in WDM systems results 
in “Raman tilt” that results in higher effective attenuation for
short wavelength channel

• SRS can be impairment in PON systems
– Depletion of 1490 nm digital signal in the presence of strong 

analog 1550 nm signal

– CNR degradation of analog signal due to transfer of power 
variations from digital signal



Self Phase Modulation
(SPM)

Cross Phase Modulation
(XPM)
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Self-phase modulation (SPM)
Experimental observation
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Theoretical Description
Nonlinear Phase Shift

• Rigorous pulse propagation and SPM penalty calculation 
must be done by solving nonlinear Shrödinger equation
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Self Phase Modulation (SPM) as combined
effect of nonlinearity and dispersion

Dispersion converts
phase modulation in 
amplitude modulation
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Cross Phase Modulation (XPM)

• XPM is similar to SPM except the fact that phase distortion 
is created by adjacent channels

t

I,ω “pump” channel
Step 2: Conversion to AMStep 1: Phase distortion

t

I,

t
)t(P2

A
nL2

t
)t()t(

eff

2
eff ∂

∂
λ
π

−=
∂

ΔΦ∂
−=ω

)t(P2
A
nL2)t(

eff

2
effλ

π
=ΔΦ

+D



Four Wave Mixing

(FWM)
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Four-Wave-Mixing (FWM)
Experimental Observation
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Four-Wave-Mixing (FWM)
Dependencies on Fiber/System Parameters
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FWM Efficiency as a function of Dispersion 
and Channel Spacing
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Summary

Nonlinearity System 
impacted How it impact the system

Stimulated Brillouin 
Scattering PON

Limits launched optical power, increases noise.
Impairs video signal through CNR, CSO and 

CTB degradation

Stimulated Raman 
scattering

LH (WDM), 
PON

Transfers power from blue channel to red 
channels i.e. effectively increasing attenuation 

for blue channels. Raman Xtalk in PONs.

Cross-phase 
modulation LH (WDM)

Distortion of the phase of adjacent transmitted 
channel that is converted into amplitude 

distortion.

Self-phase modulation LH Distortion of the phase of transmitted optical 
pulse that is converted into amplitude distortion

Four wave Mixing LH (WDM) Generation of the FWM tones that coincide with 
other channels. Appears like nonlinear noise 



Thank you!

Questions?
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