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e Introduction:
e Data rate evolution
e Transmission systems

e Nonlinear fiber impairments

o Stimulated Brillouin Scattering (SBS)
Stimulated Raman Scattering (SRS)
o Self phase modulation (SPM)
o Cross phase modulation (XPM)
Four Wave Mixing (FWM)
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Line Rate Evolution
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« Explosion of interest to fiber nonlinearities in the fiber optic system
started with introduction of 10 Gb/s systems due to necessity to use
higher optical power for higher bit rates
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Where Fiber Nonlinearities Were Studied?
Long Haul WDM Transmission System

_________

Optical

Amplifier
DI, e 80-100 km
| - Link 500-1500 km
Terminal Equipment Terminal Equipment

 Attributes of the long haul (LH) WDM transmission system
— Link length 500-1500 km with span lengths of 80-100 km
— Bit Rate 10 Gb/s, 100 or 50 GHz channel spacing on ITU grid
— C band (1530 — 1565 nm) and L band (1570-1625 nm)

— Erbium Doped Fiber Amplifier (EDFA) with 2 stages for DCM
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Passive Optical Networks
Lower Nonlinearity due to Shorter Length
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 Attributes of PONs
— Link length up to 20 km, split ratio up to 64
— Bit rates up to 2.5 Gb/s (10 Gb/s is considered)
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Nonlinearities Fiber Impairments

System

Nonlinearity impacted

How it impact the system

Limits launched optical power, increases noise.

Stimulated Brilloui
Imulfated brifiouin PON Impairs video signal through CNR, CSO and

Scatteri
cattening CTB degradation
Stimulated Raman LH (WDM), Transfgrs power.from.blue channel to req
scattering PON channels i.e. effectively increasing attenuation
for blue channels. Raman Xtalk in PONs.
Self-phase modulation LH Distortion of the phase of transmitted optical

pulse that is converted into amplitude distortion

Distortion of the phase of adjacent transmitted
Cross-phase

: LH (WDM) channel that is converted into amplitude
modulation distortion
Four wave Mixing LH (WDM) Generation of the FWM tongs that c.:omc:|deIW|th
other channels. Appears like nonlinear noise
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Stimulated Brillouin Scattering

(SBS)
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Experimental Observation of SBS

optical fiber with given index profile
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Spontaneous Brillouin Scattering
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« Brillouin scattering occurs due to interaction of light with
acoustic waves

* How it originates:
thermal motion of molecules

pressure fluctuations (acoustic waves)
refractive index variations

light sc!ttering

* Most efficient scattering occurs in a backward direction and

induces a Doppler frequency shift of the scattered light
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Stimulated Brillouin Scattering
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Backscattered light (Stokes wave) from acoustic noise interferes with the input

optical wave

An acoustic wave is generated due to electrostriction (increase in the material

density in regions of high optical intensity)

The acoustic wave further stimulates Brillouin scattering
Brillouin scattering reinforces the acoustic wave and so on...
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SBS limits maximum launch power to the fiber

* To maximize the number of network users or/and transmission
distance or bit rate high input optical power is required

Head End Splitter loss
Fiber loss |
a7 End User
I Optical Receivers
Analog Transmitter Splitter o

* Optical power launched in the fiber is limited by SBS
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SBS Impact on Digital Transmission

« Limits power budget and ¢ Creates additional noise from
reflects signal in Tx forward scattered Stocks
component

Launched Power (e.g. 6 dBm)

Fiber
Loss

Splitter
Loss

34 dB

i Connectors
and splices

Misc Margin l

Ry Sensitivity

) (e.g. -28 dBm for 622 Mb/s) CORNING
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SBS Threshold Enhancement: Dithering

AMPLITUDE
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E(t) = Eolﬁ[exp(iAn cos(2nf t+ o, )

]

Phase Modulation Phase Modulation
Amplitude Frequency

« Broadening linewidth spreads optical power across a wider spectrum, so peak
power is below threshold but total power is increased

- “State of the art” externally-modulated transmitters typically have maximum
SBS-limited output power of ~17 dBm.
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SBS Threshold Enhancement: Fiber Design
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Analog Distortion Measurements :
Fiber 1, Fiber 2 and SBS Optimized Fiber
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*No Dithering is used in these measurements
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Summary: Stimulated Brillouin Scattering

« SBS limits power of the digital signal launched in the fiber
and thus limits max transmission distance or split ratio

— Major degradation is due to increased insertion loss of fiber
and lower optical power at the Rx

« SBS can be mitigated by
— Dithering (spectral broadening of the launched signal)
— Using fibers with increased SBS threshold

* Analog signal is much more sensitive to SBS because

— Requires high power at the Rx and launched power
— CNR and CSO degrade with the onset of SBS
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Stimulated Raman Scattering

(SRS)
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Experimental Observation of SRS
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Raman Amplification
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«  Amplification by stimulated Raman scattering became

feasible due to progress in semiconductor pumps
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Raman Amplification OSNR Improvement

Higher signal
power at EDFA —
4+ Higher OSNR

Power (dB)

Raman Amplification Distance

« Distributed Raman amplification improves OSNR by 3-5 dB
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SRS Induced Impairments in WDM Systems
Signal to Signal Interaction (Raman Tilt)
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« SRS transfers energy from the signals in the blue part of the WDM
spectrum to the signal in the red part as channel

* Appears as a increased “tilt” in fiber attenuation, blue channel
experience excessive OSNR loss, can be mitigated by pre-emphasis
CORNING
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Raman Crosstalk in PONs (ITU-T G.983/984)
Wavelength Assignment

Video
1550 nm
EDFA
(Erbium Doped
Fiber Amplifier)
- N | —
OLT — AN = '
(Optical Line Terminal) 1
Data and 1x 32
Voice Splitter Data_ and
1490 nm Voice
1310 nm
Wavelength Assignment
<4— Upstream —p < Downstream ———»
1310 nm 1490 nm 1550 nm
42 MHz 550 MHz 860 MHz \
Analog TV  Digital TV HDTV/VOD
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Raman Interaction

-Low power digital signal
acts as Raman pump for
high power analog signal

Raman interaction causes
two penalties
*Power depletion of
digital signal
*CNR degradation of
analog signal
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Pump depletion
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Pump depletion: theoretical model

« Use undepleted signal approximation
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dz
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Digital Signal Depletion \‘m

26

~—~

Digital Signal Power Loss(dB

—
(&)

-_—

e

_—

9 12 15 18 21

o
o

o

o
w
(o))

Analog Signal Power (dBm)

Digital signal suffers from loss of power as the analog
signal power is increased

Effect occurs at current launched analog power levels
(~18 dBm) and gets worse at stronger power levels

Overcome by launching higher power digital signal
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C!\Q Degradation
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CNR penalty decreases with subcarrier frequency and bit rate
Mitigated by pre-emphasis of subcarriers and higher bit rates
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Summary: Raman Cross-Talk Penalties

- Raman amplifier based on SRS is employed in LH system
to boost OSNR and extend the system reach

* SRS between individual channels in WDM systems results
in “Raman tilt” that results in higher effective attenuation for
short wavelength channel

« SRS can be impairment in PON systems

— Depletion of 1490 nm digital signal in the presence of strong
analog 1550 nm signal

— CNR degradation of analog signal due to transfer of power
variations from digital signal
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Self Phase Modulation
(SPM)

Cross Phase Modulation
(XPM)
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Self-phase modulation (SPM)
Experimental observation

Optical Span R
Amplifier 80-100 km .~ %
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Theoretical Description
Nonlinear Phase Shift

* Rigorous pulse propagation and SPM penalty calculation
must be done by solving nonlinear Shrodinger equation

y_271: n,
52 LA,
§+1QE+lB2£—IyE|E|2 - .
oz 2 2 "ot B, = — A D
, =
271C

- SPM penalty becomes significant when nonlinear phase ¢,
becomes comparable to «

L

i 27 ¢ n,(2)
B, = j ru (P@)dz == j A3 P, (z)dz
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Self Phase Modulation (SPM) as combined
effect of nonlinearity and dispersion

Step 1: Phase distortion

Nonlinearity creates
phase modulation

21 n,

AD (t) = —L P
() K eff Aeff

Step 2: Conversion to AM

Dispersion converts
phase modulation in
amplitude modulation

«  SPM and linear dispersion can pull pulse apart (in —D fibers) or
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from G.P. Agrawal,
Nonlinear Fiber Optics

compensate linear broadening (in +D fibers) leading to a formation of

classical soliton
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Cross Phase Modulation (XPM)
Step 1: Phase distortion Step 2: Conversion to AM

N ?? “‘pump” channel

<

Al,

>
VA t
AD (1) = 2EL N2 opy)
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oty A __2n, n, ) 0P()
ot L OCTAL T at

« XPM is similar to SPM except the fact that phase distortion
IS created by adjacent channels
33 CORNING

Corning Optical Fiber



Four Wave Mixing

(FWM)
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G.653 and G.655 Fiber Types
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Four-Wave-Mixing (FWM)
Experimental Observation
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Four-Wave-Mixing (FWM)
Dependencies on Fiber/System Parameters
FWM-generated
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FWM Efficiency as a function of Dispersion
and Channel Spacing
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Summalry
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. : System .
Nonlinearity >y How it impact the system
Impacted
stimulated Brillouin Limits launched optical power, increases noise.
Scattering PON Impairs video signal through CNR, CSO and
CTB degradation
Stimulated Raman LH (WDM), Transfgrs power.from.blue channel to req
scatterin PON channels i.e. effectively increasing attenuation
J for blue channels. Raman Xtalk in PONs.
: Distortion of the phase of transmitted optical
Self-phase modulation LH pulse that is converted into amplitude distortion
Cross-phase Distortion of the phase of adjacent transmitted
P LH (WDM) channel that is converted into amplitude
modulation ) :
distortion.
Four wave Mixing LH (WDM) Generation of the FWM tones that coincide with

other channels. Appears like nonlinear noise
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Thank you!

Questions?
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