MMF Pulse Response and the Impact on EDC

Petre Popescu

Quake Technologies

Email: popescu@quaketech.com

Website: www.quaketech.com

IEEE 802.3 10 Gb/s on FDDI-grade MMF Study Group

Petre Popescu, Vancouver, January 13-14, 2004

1. Outline

- System Level View using Electronic Dispersion Compensation (EDC)
- Simulation and Test Methodology
- MMF Pulse Response Analysis
 - Normalized Pulse Response Group1
 - Normalized Pulse Response Group 2
 - Normalized Pulse Response Group 3
- Estimated Relative Complexity for EDC Implementation
- Summary

2. System Level View using Electronic Dispersion Compensation (EDC)

- Optical Transmitter and FDDI-grade MMF are analysed based on pulse response
 - TxData and OTxD can be evaluated using existing methodologies
 - ORxD will require additional parameters for evaluation
- Optical Receiver will require additional parameters for evaluation (most cases an eye opening for RxData can not be defined)

MMF1_1

MMF1_2

MMF2_1

MMF2_2

- EDC design and performance will be impacted by all other system components
 - FDDI-grade MMF pulse response
 - Optical receiver noise
 - Optical receiver bandwidth and group delay ripple
 - Optical receiver linearity
- FDDI-grade MMF pulse response and the impact on EDC complexity will be analysed in this contribution.

MMF Pulse Response and the Impact on EDC

3. Simulation and Test Methodology

IEEE 802.3 10 Gb/s on FDDI-grade MMF Study Group

Petre Popescu, Vancouver, January 13-14, 2004

MMF Pulse Response and the Impact on EDC

4. MMF Pulse Response (1)

- Test pulse width 100 ps, rise and fall times 30 ps,
- Pulse width increased up to 500 ps (400 ps for MMF1_1),
- One main pulse (the spacing of a parasitic pulse relative to the main pulse is less than pulse width, and much lower power),
- A simple equalization solution consists of an adaptive slicing level (very sensitive to noise and receiver nonlinearities).

5. MMF Pulse Response (2)

- Test pulse width 100 ps, rise and fall times 30 ps,
- Pulse width increased up to 500 ps (150 ps for MMF2_1, 200 ps for MMF2_2),
- One main pulse (the spacing of a parasitic pulse relative to the main pulse is more than one pulse width, and much lower power),
- The equalization will require several stages of FFE and DFE

6. MMF Pulse Response (3)

- Test pulse width 100 ps, rise and fall times 30 ps,
- Pulse width increased up to 300 ps (MMF3_1) with two or more equal power pulses
- The spacing of a parasitic pulses (MMF3_2 and MMF3_3) relative to the main pulse is more than one pulse width, and the power levels are very close,
- The equalization will require many stages of FFE and DFE and a unique solution may not be found, depending on pulse separation in time relative to the bit time (MMF3_3).

7. Estimated Relative Complexity for EDC Implementation

- Any EDC implementation will require a number of I/O's, a minimum of monitoring and test access points, and a management interface that are included in the base numbers for power dissipation (P₀) and cost (C₀, including the die, the package and the basic functionality test cost).
- The increase in relative power dissipation and cost for Group 2 type pulse response, are much smaller than for Group 3 type pulse responses.

8. Summary

- A test and simulation methodology, based on MMF pulse response model and receiver model, will allow for FDDI-grade MMF and EDC compliance test and characterization.
- The possible FDDI-grade MMF pulse responses have been divided into three groups, based on the pulse width, the number pulses including the relative power and time spacing.
 - Note: The pulse response characterization and how we group the possible pulse responses, is required in order to define, simulate and test a solution. I have made an attempt to group the possible pulse responses, to evaluate if a solution exists for a specific group, and in this case how complex (relative power dissipation and relative cost) the solution is.
- Some complex pulse responses may not have a unique solution, independent of the complexity of the EDC type.
- The relative power dissipation has a significant increase for more complex pulse responses.
- The estimated relative cost increase for more complex pulse responses is less critical. The relative cost increase due to test hardware complexity was not included.