

8 Channel VCSEL Transceiver for 10-Gig

Eric B. Grann and Ken Herrity

Blaze Network Products Inc. grann@blazenp.com; kenh@blazenp.com

IEEE 802.3 HSSG Interim Meeting

Dallas, TX January 18-20, 2000

10GBASE-SX8 Proposal

Data 8 duplex channels; 1.5625 Gb/s/channel

Fiber Multi-mode fiber (Installed Or New)

Sources VCSEL's

Wavelengths 778nm - 865nm

Mux Plastic Molded Optic

Detectors
Silicon

Demux
Plastic Molded Optic

Electonics Same inputs as LX, on-transceiver SerDes

8-channel CWDM Benefits

- Achieves 200m on installed MMF
- Potential for even greater distance on new MMF
- Meets typical environmental requirements
- Leverages Parallel Optics electronics technologies

LOWEST COST OPTION

Can this be done? YES!

- Injection-molded optics Precision complex optical systems and connectors can be molded and replicated in volume.
- Standard interference filters Small filter size yields 1000's of parts per wafer growth.
- VCSEL based Leverages 1000BASE-SX laser sources and vendors
- Silicon Detectors Large active area, high-speed, low-cost detectors for the near infrared.
- Passive alignment Mux / Demux assemblies feature alignment-free construction.

Optical Mux / Demux

- Zig-Zag construction
- Dual function for both combining and separating multiwavelength optical signals

Multiplexer Coupling Optics

Injection Molded Optic

Optical Multiplexer

Optical System Performance

- Multiplexer losses (-2.2dB)
 - > Absorption (-0.7dB)
 - > Filters (-0.5dB)
 - ➤ Connectors (-0.5dB)
 - > Alignment (-0.5dB)
- Demultiplexer losses
 - > Beam divergence dominates losses

VCSEL Laser Sources

- Leverage 1000BASE-SX laser sources and vendors
- VCSEL wavelengths are easily fabricated over a wide spectral range (775 - 865 nm)
- Current wafer growths yield ~10,000 lasers with small wavelength spreads (± 1-2 nm)

EXTREMELY LOW COST LASERS

VCSEL Performance

- Low threshold current (5 7 mA)
- > Fast rise / fall times (< 200ps)

Channel Spacing

- Wavelength Tolerances
 - VCSEL manufacturing (±1-2 nm)
 - >Thermal drift (0.06nm/°C)
 - >Filter center wavelength (± 0.4nm)
- > 5.5 THz spacing

	0 -						
	-5 -						
dB)	-10 -						
Intensity (dB)	-15 -						
<u> </u>	-20 -						
	-25 -						
	-30	780	800	820	840	860	
		Wavelength (nm)					

Parameters	λ(nm)			
Laser 1 @ 35°C	778.0			
Laser 2 @ 35°C	789.3			
Laser 3 @ 35°C	800.9			
Laser 4 @ 35°C	812.8			
Laser 5 @ 35°C	825.1			
Laser 6 @ 35°C	837.8			
Laser 7 @ 35°C	850.8			
Laser 8 @ 35°C	864.3			

Filter Performance

- > Environmentally stable filters (0.2 nm shift from 0 100°C)
- High transmission efficiency (> 90%)

Detectors

- Silicon detectors yield 1000's / wafer for pennies
- Large apertures (200μm)
- Low voltage bias (2 volts)
- > High electrical bandwidth (2 GHz @ 2 V)
- Good responsivity over spectral range

Maximum Optical Power

- Eye safe power @ 850nm < 4dBm</p>
 - ➤ For eye safe, each channel < -13dB
 - Must have more signal
- Using open fiber control
 - ▶Each laser (~ +5 dB)
 - ➤Total power (~ +14dB)
- Flexibility to run higher powers opens door to lower Bit-error-rates

Manufacturability

- Alignment
 - Passive optical subassembly alignment
 - >4 40 micron component placements
 - >Standard high-speed automated assembly equipment available
 - > Assembly process is CM compatible
- Form Factor
 - >MTRJ-style
 - ➤ GBIC-style
 - >1x9-style

Optoelectronics cost

How fast will the cost of the optoelectronics drop?

Conclusions

