
Page 1 of 24

4D ENCODING IN LEVEL-ONE'S PROPOSAL FOR 1000BASE-T

by

Jaime E. Kardontchik

Advanced Micro Devices

Sunnyvale, CA 94088

August 21, 1997 - Rev B

The purpose of this tutorial is to fill-in the missing steps that lead to
the final definition of the 8 subsets of the 4D encoding, as presented
many times by Sailesh Rao, from Level-One, and that I reproduce here for
convenience from his last presentation in Maui:

SUBSET MAPPING

Subset members

D0 XXXX + YYYY

D1 XXXY + YYYX

D2 XXYY + YYXX

D3 XXYX + YYXY

D4 XYYX + YXXY

D5 XYYY + YXXX

D6 XYXY + YXYX

D7 XYXX + YXYY

Members of the Task Force come with different backgrounds and expertise,
and it is sometimes difficult to follow and understand all the technical
details of one proposal. The objective of this tutorial is to increase
the understanding of the 4D coding within the Task Force.

A simple editor (vi) was chosen to save a lot of time and allow an easy
and wide distribution of the tutorial.

Page 2 of 24

................

1.- ONE-DIMENSIONAL VIEW AND NOMENCLATURE

If we look at one transmitter, we have basically a PAM-5 system, with
levels:

{-2, -1, 0, 1, 2}

and the minimum distance between levels is 1 Volt.

We define now Y and X subsets as follows:

Y = {-2, 0, 2}

X = {-1, 1}

So, when we talk, for example, about an X symbol we refer either to
a -1 or +1 level. Similarly, a Y symbol represents a -2, or 0 or +2
level.

...............

2.- TWO DIMENSIONAL VIEW

With two transmitters, each one sending PAM-5 levels, we obtain a
two dimensional constellation, PAM5x5, consisting of 25 points:

Page 3 of 24

 (-2,2) (-1,2) (0,2) (1,2) (2,2)
* * * * *

* * * * *

* * * * *

* * * * *

 (2,-2)
* * * * *

Fig 1: two-dimensional PAM5x5 constellation

where I added in parenthesis the levels represented by some points,
so the meaning becomes clear. For example, the point (-1,2) represents
transmitter # 1 sending a level -1 V and, at the same time, transmitter
2 sending a level +2 V. The minimum distance between points in this
2D space is again 1 Volt:

...............

3.- TRELLIS CODING

If we do not introduce any additional coding, the receiver will have
to recover the transmitted data at a symbol-per-symbol basis, where
the distance between symbols is 1. The idea of Trellis-Coding is to
introduce an additional structure in the transmitter so that the
basic units sent are sequences instead of individual symbols. In
addition, not any arbitrary sequence will be allowed, and the allowed
sequences will be such that the Euclidean distance between them will
be greater than 1, making easier for the receiver to distinguish
different sequences (distance > 1) than to distinguish different
individual symbols (distance = 1). This will minimize the probability
of error in the receiver. In Level-One's proposal the minimum squared
distance between valid sequences is 4. We do not explain here how these

Page 4 of 24

sequences (or trellises) are generated. We only explain in this tutorial
how this additional structure can be generated and its properties.

...............

4.- PARTITIONING - STEP ONE

The first step towards creating these allowable sequences is to
divide the 2D constellation into two subsets by assigning alternate
points to each subset, i.e., according to the pattern

A B A B A

B A B A B

A B A B A

B A B A B

A B A B A

Fig 2: subset partitioning of the PAM5x5 constellation

(see Forney et al, Reference 1, page 638). The most important points
to notice is:

a) the points in each subset lie again on a square grid
 (rotated 45 degrees with respect to the original grid)
b) the minimum squared distance between points within a subset
 (= 2) is twice the minimum squared distance between points
 in the original constellation (= 1).
c) because of the first property, the partitioning can be
 repeated to yied smaller subsets with minimum squared
 distance between points of 4, 8, 16, ... and so on

We can redraw this pattern as follows using our X-Y nomenclature for

Page 5 of 24

the PAM-5 levels:

YY XY YY XY YY

YX XX YX XX YX

YY XY YY XY YY

YX XX YX XX YX

YY XY YY XY YY

Fig 3: as Fig 2, but using the X-Y nomenclature to identify
 the different points of the constellation

A point XY in Fig 3, means that transmitter # 1 sent a type X level
(that could be either -1 or +1) and transmitter # 2 sent a type Y level
(that could be either -2 or 0 or +2).

Figures 4a and 4b show the two subsets of 'A' and 'B' type points
separately:

Page 6 of 24

YY YY YY

XX XX

YY YY YY

XX XX

YY YY YY

Fig 4a: subset of 'A' points

XY XY

YX YX YX

XY XY

YX YX YX

XY XY

Fig 4b: subset of 'B' points

We will call the subset shown in Fig 4a the EVEN subset, and the
subset shown in Fig 4b the ODD subset. The reason for this naming

Page 7 of 24

is that the sum of the level values of any point belonging to the
EVEN subset is an even number, and the sum of the level values
of any point belonging to the ODD subset is an odd number.

Notice that the minimum squared distance between points in each
subset is 2.

...............

5.- PARTITIONING - STEP TWO

5.a) Partitioning of the EVEN subset

We will further subdivide the EVEN and ODD partitions into two
subsets each. I will show in great detail how this is done, step
by step. For instance, let us take the EVEN subset of Fig 4a.
The first step is to look at Fig 4a at an angle of 45 degrees,
in which case it will look as shown in Fig 5:

. . YY . .

. YY XX YY .

YY XX YY XX YY

. YY XX YY .

. . YY . .

Fig 5: EVEN subset from Fig 4a after 45 degrees rotation

From Fig 5 we see that we have again a square lattice, that
can be subdivided into two subsets, 'A' and 'B', as we did before.
The results are shown in Figs 6a and 6b:

Page 8 of 24

. . YY . .

. YY YY .

YY YY YY

. YY YY .

. . YY . .

Fig 6a: Subset A of the EVEN subset

. . . .

. XX .

XX XX

. XX .

. . . .

Fig 6b: Subset B of the EVEN subset

And now we can rotate Fig 6a and 6b back 45 degrees to get

Page 9 of 24

the subsets look more normally, as shown in Fig. 6c and 6d:

YY YY YY

YY YY YY

YY YY YY

Fig 6c: Subset A of the EVEN subset, after another
45 degree rotation: (YY) subset

The points represented in Fig 6c are:

(-2,2) (0,2) (2,2)

(-2,0) (0,0) (2,0)

(-2,-2) (0,-2) (2,-2)

And here is the back to normal subset of Fig 6b:

Page 10 of 24

XX XX

XX XX

Fig 6d: Subset B of the EVEN subset, after another
45 degree rotation: (XX) subset

The points represented in Fig 6d are:

(-1,1) (1,1)

(-1,-1) (1,-1)

It is natural to call the subset A of the EVEN subset (Fig 6c) the
(YY) subset, and the subset B of the EVEN subset (Fig 6d) the (XX)
subset.

Notice that the minimum squared distance between points in each
subset is now 4.

...............

5.b) Partitioning of the ODD subset

Let us take now the ODD subset of Fig 4b and rotate it by 45
degrees. It will look as shown in Fig 7:

Page 11 of 24

. XY YX .

XY YX XY YX

YX XY YX XY

. YX XY .

Fig 7: ODD subset from Fig 4b after 45 degrees rotation

From Fig 7 we see that we have again a square lattice, that
can be subdivided into two subsets, 'A' and 'B', as we did before.
The results are shown in Figs 7a and 7b:

. . YX .

. YX . YX

YX . YX .

. YX . .

Fig 7a: Subset A of the ODD subset

Page 12 of 24

. XY . .

XY . XY .

. XY . XY

. . XY .

Fig 7b: Subset B of the ODD subset

Now we can rotate Figs 7a and 7b back 45 degrees to get the
subsets look more normally, as shown in Figs. 7c and 7d:

YX YX YX

YX YX YX

Fig 7c: Subset A of the ODD subset, after rotating
back 45 degrees: (YX) subset

Explicitly, the points in Fig 7c represent:

Page 13 of 24

(-2,1) (0,1) (2,1)

(-2,-1) (0,-1) (2,-1)

XY XY

XY XY

XY XY

Fig 7d: Subset B of the ODD subset, after rotating
back 45 degrees: (XY) subset

Explicitly, the points in Fig 7d represent:

(-1,2) (1,2)

(-1,0) (1,0)

(-1,-2) (1,-2)

It is natural to call the subset A of the ODD subset (Fig 7c) the
(YX) subset, and the subset B of the ODD subset (Fig 7d) the (XY)
subset.

Notice that the minimum squared distance between points in each
subset is now 4.

...............

We have now finished the subdivision of the original PAM5x5 set
into four subsets, and this is all what we need to continue
to the next step: the building of the 4D constellation. Notice

Page 14 of 24

that we could have continue subdividing the subsets to get further
increases in the minimum squared distance (8, 16, ...), but for
our purposes this is not needed: it would increase the total
number of states of the encoder and make more complex the
decoder at the receiver.

Let us summarize what we have: our original PAM5x5 constellation
was divided into an EVEN and an ODD subsets, which were further
subdivided into two subsets each:

(YY), (XX), (YX) and (XY)

The minimum squared distance between points in each of these four
subsets is 4. These subsets are shown in Figs. 6c, 6d, 7c and 7d.

...............

6.- MULTIDIMENSIONAL CONSTELLATIONS

The 4D coding can be derived from the four 2D subsets, (YY), (XX),
(YX) and (XY) following the steps suggested either by Ungerboeck
(Ref 2, page 17) or by Wei (Ref 3, page 484). I decided, arbitrarily,
to follow more closely Wei's steps and nomenclature.

...............

7.- DEFINE 4D 'TYPES'

Using now the four transmitters we can define sixteen 4D 'types'
(I use Wei's nomenclature) by concatenating pairs of 2D subsets.
These 'types' are shown in the following Table:

Page 15 of 24

Table I: 4D TYPES

type # content

1 YYYY
2 YYXX
3 YYYX
4 YYXY

5 XXYY
6 XXXX
7 XXYX
8 XXXY

9 YXYY
10 YXXX
11 YXYX
12 YXXY

13 XYYY
14 XYXX
15 XYYX
16 XYXY

For example, if at time t = k*T, where k is an integer and T is the
baud period,

Tx # 1 sends -1V
Tx # 2 sends 2V
Tx # 3 sends 1V
Tx # 4 sends 1V

the quartet (-1,2,1,1) is of type XYXX. We can look at these points
as points in a four-dimensional space. Within a given 'type', the
minimum squared distance between points is still 4. For instance,
the points:

(-1,2,1,1) and (-1,0,1,1)

belong both to type XYXX. The Euclidean squared distance between
these points is:

[(-1) - (-1)]^2 + [2 - 0]^2 + [1 - 1]^2 + [1 - 1]^2 = 4

...............

Page 16 of 24

8.- DEFINE 4D SUBLATTICES

The sixteen types may be grouped into eigth 4D 'sublattices', as shown
in Table II:

Table II: 4D SUBLATTICES

sublattice # content # of points pruned to

D0 XXXX + YYYY 97 64

D1 XXXY + YYYX 78 64

D2 XXYY + YYXX 72 64

D3 XXYX + YYXY 78 64

D4 XYYX + YXXY 72 64

D5 XYYY + YXXX 78 64

D6 XYXY + YXYX 72 64

D7 XYXX + YXYY 78 64

------ -------

total: 625 512

It is easily shown that with this type of grouping the minimum distance
between any pair of points within a given sublattice is still 4. For
example, let us take the following points in D1:

(1,-1,1,2) (belonging to XXXY)

and

(2,0,2,1) (belonging to YYYX)

The Euclidean distance between these two points is:

[1 - 2]^2 + [-1 - 0]^2 + [1 - 2]^2 + [2 - 1]^2 = 4

In general, it is clear that if one point belongs to XXXY and the other
to YYYX, the distance between the components of the points in any
dimension must be equal or larger than 1, since, the minimum distance

Page 17 of 24

between X and Y points is 1. Remember that X = {-1, 1} and Y = {-2, 0,
2}.
Hence, the mininum squared distance between any pair of four dimensional
points in a given sublattice must be equal or greater than 4.

And the same can be said for all the eight sublattices: notice that
the sixteen 'types' have been grouped in such a way that if the
component of one point on one axis is X, then the component of the
second point on the same axis (or dimension) is Y, and viceversa.
For example, looking at the two 'types' that belong to the D7 sublattice:

D7: X Y X X

 | | | |
| | | |

 Y X Y Y

The minimum squared distance, min_squar_dist, between any two points
belonging to sublattice D7, one belonging to type XYXX and the other
belonging to type YXYY, is:

min_squar_dist = min[(X-Y)^2] + min[(Y-X)^2] +

 min[(X-Y)^2] + min[(X-Y)^2] = 1+1+1+1 = 4

The reason for grouping the sixteen 'types' into pairs to form eight
sublattices is to simplify the coding and decoding: we have created
in this way a 4D 8-state encoder, instead of a 4D 16-state encoder.

The total number of points in each sublattice is shown in a separate
column. The way it is calculated is very simple. For example, for
sublattice D3 the total number of points is:

of points in D3 = 2*2*3*2 + 3*3*2*3 = 78

...............

9.- DEFINE 4D FAMILIES

The eight 4D sublattices may be further grouped into two 4D families,
with minimum squared distance of 2 between points in a family. These
two families are shown in Table III:

Page 18 of 24

Table III: 4D FAMILIES

family content

EVEN D0 + D2 + D4 + D6

ODD D1 + D3 + D5 + D7

The reason for naming these families 'EVEN' and 'ODD' is that any
point in the EVEN family has an even number of X's, and any point
in the ODD family has an odd number of X, or, any other words,
the sum modulo-2 of the coordinates of any point belonging to the
EVEN family is 0, and the sum modulo-2 of the coordinates of any
point belonging to the ODD family is 1.

...............

10.- HIERARCHY OF THE PARTITIONING

We may now summarize the 4D partitioning as shown in Fig. 8:

 |--- D0
 |
 |--- D2
 ----- EVEN -----|
 | |--- D4

| |
| |--- D6
|

 4D -----|
|
| |--- D1
| |
| |--- D3

 ----- ODD ------|
|--- D5
|
|--- D7

lattice families sublattices

Fig. 8: partitioning of the 4D lattice

At the top level, the minimum squared distance between points

Page 19 of 24

in the lattice is 1. At the second level, the minimum squared
distance between points that belong to the same family is 2. At the
third level, the minimum squared distance between points that belong
to the same sublattice is 4.

The Parity bit in Level-One's Trellis Encoder selects the family
(EVEN or ODD). The bits T_D[1] and T_D[0] select one out of the four
sublattices within the chosen family. The other six bits, T_D[7:2],
select a particular point within the chosen sublattice (a sublattice
contains 64 points). The transmitter sends this point to the wires
(remember that this is a 4D point, i.e., one component, or voltage
level, per transmitter, per clock period).

The meaning and use of the Parity bit and T_D[7:0] are further
clarified in Fig 9, taken from Level-One's presentations:

 | S |
 | |-------------------------------- T_D[7] --

--- | C | |
 | | |-------------------------------- T_D[6] |
G | | R | |
 | | |-------------------------------- T_D[5] | select
M |Tx_D[7:0] | A | \ point
 |----------| |-------------------------------- T_D[4] / in
I | | M | | subset
 | | |-------------------------------- T_D[3] |
I | | B | |
 | | |-------------------------------- T_D[2] --
--- | L | --
 | |-------------------------------- T_D[1] |

 | E | | |
 | |-----(-------------------------- T_D[0] |
 | R | | | \ select
 ----- | | / subset

 | | |
 ---- | ---- | ---- |
 ----| |--(+)--| |--(+)--| |-------- PARITY |
 | ---- ---- ---- | |
 | | --

Fig 9: Trellis encoder used in Level-One's proposal
 subset = sublattice

Page 20 of 24

Notice that the encoder has three flip-flops, or memory units: the
selected subset will then depend on T_D[1:0] and on the values
stored in these flip-flops, or, in other words, it will depend on
the state of the encoder. This is a simple 8-state machine, where
the next state will depend on the present state and on the value
of T_D[1:0].

...............

11.- WHO NEEDS ALL THIS ?

The Viterbi decoder.

The Viterbi decoder in the receiver compares all the paths diverging
from one node (or state) A of the encoder and merging after some time
later into another node B. The measure of comparison is the Euclidean
distance between the different paths. The more different these paths
are (in terms of Euclidean distance) the easier it will be to find and
choose the actual path followed by the encoder.

If we follow the following five rules the minimum Euclidean distance
between any two different paths will be 4:

a) transitions from a given state A at time k*T to a state B at
 time (k+1)*T

 rule 1: when the encoder goes from A to B,

 state: A ----- B

 at time: k (k+1)

 all the possible output symbols must belong to the same
 sublattice (hence, there are only 64 possible different
 transitions from A to B).

From rule # 1, the minimum squared Euclidean distance
between two different paths,

 path # 1: A --- B

path # 2: A --- B

Page 21 of 24

at time:k (k+1)

 has to be 4.

b) transitions emerging from a given state A

rule 2: when the encoder is in a given state A, the symbols
he can sent can only be chosen from the EVEN
family OR (EXCLUSIVE) the ODD family

rule 3: let the encoder be in state A at time kT, and let
N1 and N2 be two possible states of the encoder,
or nodes of the Trellis, at time (k+1)*T.

We already know, by rule 1, that for the transition
A ---> N1 all the possible output symbols must
belong to only one sublattice, and for the transition
A ---> N2 all the output symbols must belong to only
one sublattice. Rule # 3 states that the two
sublattices must be different. And, as a reminder,
from Rule # 2, these two different sublattices
must be both EVEN or (exclusive) both ODD.

 From rules # 2 and 3, the minimum squared Euclidean
distance between two paths,

 path # 1: A --- N1

path # 2: A --- N2

at time:k (k+1)

 has to be 2.

c) transitions merging into a given state B

rule 4: all the paths that merge into a given state B, must
have the last symbol sent belong either to the EVEN
family OR (EXCLUSIVE) the ODD family.

rule 5: let N1 and N2 be two possible states of the encoder

Page 22 of 24

at time k*T, and let B be a possible state of the
encoder at time (k+1)*T.

We already know, by rule 1, that for the transition
N1 ---> B all the possible output symbols must
belong to only one sublattice, and for the transition
N2 ---> B all the output symbols must belong to only
one sublattice. Rule # 5 states that the two
sublattices must be different. And, from Rule # 4,
these two different sublattices must be both EVEN
or (exclusive) both ODD.

 From rules # 4 and 5, the minimum squared Euclidean
distance between two paths,

 path # 1: N1 --- B

path # 2: N2 --- B

at time:k (k+1)

 has to be 2.

.............

The following two examples describe the only two cases that can exist
when two different paths begin at a common state A and end, some
time later, in a common state B. Two paths will be called different
if at least one output symbol is different. In the first example,
the two paths follow the same sequence of intermediate states. In the
second example, the two paths diverge at a given time (they follow
different branches) and merge together at a later time. In both
cases, by following the above five rules, we end up with a minimum
squared Euclidean distance of 4 between the two output sequences.

Example # 1:

For example, assume two possible paths from state A at time 3*T to
state B at time 8*T:

path # 1A --- N1 --- N2 --- N3 --- N4 --- B

path # 2A --- N1 --- N2 --- N3 --- N4 --- B

at time 3 4 5 6 7 8

Page 23 of 24

Following rule # 1 the output symbols could belong, for example,
to the following sublattices:

path # 1 D0 D3 D1 D1 D5

path # 2 D0 D3 D1 D1 D5

at time 3 4 5 6 7

For the two paths to be different, at least at one sampling time,
say t = 6*T, they should have had different output symbols. And,
since the two symbols belong to the same sublattice D1, the minimum
squared distance between them is 4. Hence, the minimum squared
distance between the two sequences is 4.

Example # 2:

In the previous example we had two different paths going through
the same sequence of encoder states. Now we treat the second
possible case, where at some time k*T the two paths "diverge",
that is they go to different states at time (k+1)*T, and at
some later time, (k+n)*T, n > 1, they converge again.

For example, assume the following two possible paths from state
A at time 3*T to state B at time 8*T:

path # 1A --- N1 --- N2 --- N5 --- N4 --- B

path # 2A --- N1 --- N3 --- N1 --- N4 --- B

at time 3 4 5 6 7 8

We see that at time t = 4*T the two paths diverge (they go to
different states at time t = 5*T, states N2 and N3) and at time
t = 7*T the two paths converge again into the same state N4.

When the paths diverge at time 4*T, we know, by rules # 2 and 3,
that the ouput symbols must belong to different sublattices
of the same parity. Hence the symbols outputed at time 4*T must
have a minimum squared distance of 2.

When the paths converge again at time 7*T, we know, by rules
4 and 5, that the two last symbols outputted before converging
must have belonged to different sublattices of the same parity.
Hence, the minimum squared distance between the two symbols

Page 24 of 24

outputted at time 6*T must have been at least 2.

Therefore, the two paths that begin at state A of the encoder
at time t = 3*T and end later in state B at time t = 8*T, have
a guaranteed accumulated minimum squared Euclidean distance
between sequences of 2 + 2 = 4.

...............

12.- AND WHAT IF WE DO NOT WANT TO USE VITERBI DECODING ?

Suppose we want to reduce the complexity and latency of the
receiver, by using symbol-by-symbol decoding, instead of
sequence-by-sequence decoding. Do we still can gain
anything from this division between X and Y symbols, and the 4D
structure we have built defining families and sublattices ?

The answer is: yes.

Without encoding, the minimum squared Euclidean distance between
paths would have been only 1, the minimum distance between symbols
in the 4D lattice.

But even without using Trellis encoding, we can force the Parity bit
to be always zero, Parity = 0, transmitting then always 4D EVEN
symbols, whose minimum squared distance between them is 2,
corresponding to a coding gain of 3 dB.

...............

REFERENCES

1) G. David Forney et al
 "Efficient modulation for band-limited channels"
 IEEE Journal on Selected Areas in Commun, vol SAC-2, pp 632-647,
 Sept 1984

2) Gottfried Ungerboeck
 "Trellis-coded modulation with redundant signal sets, Part I and II
 IEEE Communications Magazine, vol 25, Feb 1987

3) Lee-Fang Wei
 "Trellis-coded modulation with multidimensional constellations"
 IEEE Trans. on Information Theory, vol IT-33, pp 483-501, July 1987

...............

