

10 Gb/s serial A Feasible Low Cost Technology

Jens Fiedler

Dr. Auracher, Dr. Borchert - Corporate Research Photonics

Infineon Technologies

September 27, 1999

IEEE HSSG 802.3

York, UK

jens.fiedler@infineon.com

The perfect optical link!

Datei.ppt/name/abt./10.99 /1

Outline

- Status of Technology
- Measurement Results
- Outlook
- Conclusion

Status of Technology

- Components available:
 - ➤ Directly modulated uncooled DFB laser (originally designed for 2.5G application) used in high volume standard TO package
 - Laser diode driver
 - Transimpedance amplifier
 - Chipset Mux/Dmux 4:1 under development (16:1 available)
- TO and laserdiode driver chip mounted on ceramic substrate,
 (Next step: IC assembly on standard PCB)
- First measurement performed for 10 and 12.5Gb/s
- Temperature range for evaluation 0...70°C

Frequency Response vs. Ibias at 25°C

Measurement with TO-canned 2.5Gb DFB Laser

Frequency Response vs. Temperature (Ibias=65mA)

Measurement with TO-canned 2.5Gb DFB Laser

Frequency Response vs. Temperature (Ibias=81mA)

Measurement with standard TO-canned DFB Laser

Infineon Fiber Optics

Measurement Results 10Gb/s at 0...70°C (preliminary test setup)

26°C

62°C

70°C

Measurement with standard TO-canned DFB Laser

10Gb/s (optimized test setup)

10 Gb/s becomes Reality!

Measurement with standard TO-canned DFB Laser

12.5Gb/s (optimized test setup)

And even 12.5 Gb/s is Reality!

Measurement with standard TO-canned DFB Laser

Measurement Results Summary

➤ Technology proven in the temperature range 0...50°C ambient with a plain 2.5Gb/s DFB laser in low cost package

Performance improvement for higher temperature targeted with new laserdiode design

1.3µm DFB Laserdiodes for 10Gb/s Applications

10Gb/s-relevant data from commercial quality samples

(No. of samples: 20)

- Maximum 3dB-bandwidths ∈ [11.5GHz, 14GHz]
- \angle RIN-level \leq -130dB/Hz for I Ith > 10mA
- ∠ Chip-redesign under way: Samples in 4Q99 available

1.3µm DFB Laserdiodes for 10Gb/s Applications

High Temperature Operation of 1.3µm CC DFB Laser

1.3µm DFB Laserdiodes for 10Gb/s Applications

Small-Signal Response of 1.3µm CC-DFB Laser

1.3µm DFB Laserdiodes for 10Gb/s Applications

1.3µm MQW-RWG Laserdiodes

1.3µm DFB Laserdiodes for 10Gb/s Applications

New laserdiode will perform:

Higher bandwidth

> Improved performance at high temperature

Lower laser current

Conclusion 1

10G serial:

Proven as reasonable solution, also for 12.5Gbd

With low cost capability due to lowest complexity and lowest number of components

With best time to market approach

Conclusion 2

Therefore:

- ➤ We suggest that electrical interface activities should support 10G serial
 - Otherwise Ethernet would restrict to fewer applications (excluding MAN,WAN)
- By the use of single mode fiber 10G serial could cover all applications from 1m to 40km and beyond)
- Single mode fiber will be necessary for future applications and high bandwidth links anyway
 - why not use it now?

Infineon Fiber Optics

⇒ 10G serial -

a chance for one single low cost solution covering all applications!