

Optional Powering based on PoDL for 10SPE

Andy Gardner

Presentation Objectives

- Review issues relating to technical and economic feasibility of power delivery for PoDL
- Discuss potential changes to Clause 104 required to support 10PSE

PoDL Powering Considerations

- The PoDL power coupling network must exceed the MDI return loss and mode conversion loss requirements of the PHY with adequate margins for economic feasibility.
- Ripple and transients from PoDL power converters must be filtered before the MDI – lower frequency high-pass poles in the PHYs make this more difficult.
- DCR of MDI magnetics and cable resistance limit the power available for the PD load.
- Saturation current of the MDI magnetics also limits power delivery.

PoDL Circuit Architecture

Impact of PHY Return Loss on PoDL Coupling Inductors

- The open-circuit inductance (OCL) of the PoDL coupling inductors is driven by the PHY MDI low-frequency return loss requirement.
- Higher OCL results in increased DCR, lower saturation current, larger core volume, and lower self-resonant frequency.

Impact of MDI Mode Conversion Requirements on PoDL

- Mismatch of PoDL coupling inductors causes mode conversion if they are connected directly at the MDI.
- Connecting the PoDL inductors to the MDI through the PHY CMC solves this problem, but the CMC's ampacity and DCR may be an issue for power delivery.
- The alternative circuit configuration shown to the right may be used, but PoDL implementers will need to engineer a power coupling network that exceeds the MDI mode conversion requirement with adequate margin.

Alternative PoDL Circuit Architecture

PoDL Power Delivery Model

- DC model for analyzing power delivery through series resistance to a load
- Assumes constant power load (worst case assumption)
- Lumps all sources of resistance between PSE voltage source and the PD into R_{Loop}
- Loop power efficiency is defined as ratio of delivered load power to power sourced by $V_{\rm PSE}$

Loop power efficiency = P_{Load}/P_{VPSE}

Power Delivery Efficiency vs. Loop Resistance

- Maximum power transfer occurs when the loop power efficiency is 50%, but...
- Operation at 50% loop power efficiency results in the collapse of the PD input voltage for a constant power load
- Efficiencies above 70% are typically required to ensure robust loop stability
- See darshan_3bu_01_0114.pdf for analytical derivation

Current Clause 104 Power Class Table

- The current power Class table assumes less than 6.5 ohms of cable resistance
- PSE voltages from 6V to 60V are supported
- Delivered power ranges from 0.5W to 50W depending on PSE output voltage, resistance, and current
- All existing power classes require operation at loop power efficiencies greater than 70%

	12 V unregulated PSE		12 V regulated PSE		24 V unregulated PSE		24 V regulated PSE		48 V regulated PSE	
Class	0	1	2	3	4	5	6	7	8	9
V _{PSE(max)} (V) ^a	18	18	18	18	36	36	36	36	60	60
V _{PSE_OC(min)} (V) ^b	6	6	14.4	14.4	12	12	26	26	48	48
V _{PSE(min)} (V)	5.6	5.77	14.4	14.4	11.7	11.7	26	26	48	48
I _{PI(max)} (mA) ^c	101	227	249	471	97	339	215	461	735	1 360
P _{Class} (W)	0.566	1.31	3.59	6.79	11.4	3.97	5.59	12	35.3	65.3
V _{PD(min)} (V)	4.94	4.41	12	10.6	10.3	8.86	23.3	21.7	40.8	36.7
$P_{PD}(W)^d$	0.5	1	3	5	1	3	5	10	30	50

Table 104–1—Class power requirements matrix for PSE, PI, and PD

 $^{a}V_{PSE}$ is the voltage measured at the PSE PI over the full range of operating conditions.

^bV_{PSE OC(min)} is the minimum allowed open circuit voltage measured at the PSE PI.

^{cI}_{PI(max)} is the maximum current flowing at the PSE and PD PIs except during inrush or an overload condition. I_{PI(max)} may be exceeded during inrush or an overload (see 104.4.6.2). Users are cautioned to be aware of the ampacity of cabling, as installed, and local codes and regulations (see 104.8.1).

^dP_{PD} is the maximum average available power at the PD PI.

Intrinsic Safety and PoDL

- Intrinsic safety barrier circuits prevent external transients from propagating into the hazardous area while also limiting power dissipation if there is a fault in the hazardous area.
 - Example: An IIC explosive gas class safety barrier circuit limits power dissipation to less than 1.3W during a fault condition using a simple series resistor
- PoDL will need to address detection, classification, and power delivery through the resistance of safety barrier circuits.

Summary of Potential Changes to Clause 104 for 10SPE

• Detection

- Fast detection (<3ms) is supported by Clause 104 and is intended for engineered system applications with cable resistance less than 6.5 ohms
- Support for substantially higher cable resistance and intrinsic safety barrier resistors will require a revised detection scheme
- Classification
 - The serial communication classification protocol (SCCP) is used to classify PDs in non-engineered systems
 - PDs that require classification do not present a detection signature
 - Support for higher cable resistance and intrinsic safety barrier resistors will require a revised classification scheme
- PSE and PD Types
 - New PSE and PD Types will need to be added to support signal integrity requirements for 10SPE PHYs
- Power Classes
 - New Classes will need to be added to support power delivery through long reach cables and intrinsic safety barrier resistors

Questions?

Thank You!

