Proposal for 1000m link specification

Dieter Schicketanz consultant Reutlingen University

Supporters

W.Blaich Siemens

L.Winkel Siemens

R.Dold Metz-connect

Y.Engels Leoni

R.Schmidt Harting

M.Fritsche Harting

1000m Link proposal

Assumptions:

- Up to 10 connectors
- No derating cords (if used would result in shorter links)
- 100 ohm nominal impedance
- 1-20 MHz
- Cable defined is deployed as Profibus widely; 1.05 mm copper diameter (AWG 18)
- Industrial environment E2 and E3
- Non industrial E1 for cabling outside harsh environment
- Note: in ISO the IEEE link is named channel

Return loss

1.1 Return loss

The return loss for the pair of a channel shall not exceed the limits computed, to one decimal place, using the formula of Table 1.

Table 1- Formula for return loss limits of a channel

Frequency	Minimum
	return loss
MHz	dB
1 ≤ <i>f</i> ≤ 20	19,0

The number of connection allowed is related to the link length:

- 10 connectons up to 1000m
- 8 connectons up to 750m
- 6 connectons up to 500m
- 4 connectons up to 200m

Note: This low value for return loss is to take care of cables with low impedance

Insertion loss

as presented in Rational for 1000m and Proposal for Objectives

J. Gottron L.Winkel 5 October 2016

1.2 Insertion loss

The insertion loss for the pair of a channel shall not exceed the limits computed, to one decimal place, using the formula of Table 2.

Table 2 – Formulae for insertion loss limits for a 1000 m channel

Frequency MHz	Maximum insertion loss
<u>1 < f ≤ 20</u>	$10*(1,23\sqrt{f}+0.01f+0.2/\sqrt{f})+10\times0.015\sqrt{f}$

Note: to be deleted before publication: ILD is marginal for this frequencies.

1.3 Limits involving more than one pair

All these limits are not applicable to one pair channels: NEXT, PSNEXT, ACR_F, PSACR_F, delay skew and resistance unbalance

1.4 Unbalance

The near end unbalance (TCL) for the pair of a channel shall not exceed the limits computed, to one decimal place, using the formula of Table 3.

Table 3 – Formulae for TCL loss limits for a 1000 m channel

Frequency MHz	Minimum TCL loss dB
1 < <i>f</i> ≤ 20	25 dB

Note: 1.3 just for information, to be deleted before publication

1.5 Alien (Exogenous) crosstalk

1.5.1 General

Definition and set up of alien noise measurement for one pair channels can be seen in IEC ______61156-1 (in preparation).

Note:Plateau values at 20 MHz for class FA used.

1.5.2 PSANEXT

The PS ANEXT of a channel shall meet the limits computed, to one decimal place, using the value of Table able 5.

Table 5 – Formulae for PSANEXT limits for a channel

Frequency MHz	Minimum PSANEXT		
MHz		dB	
	E1	E2	E3
1 < <i>f</i> ≤ 20	57	67	67

Note: these values are met if coupling attenuation and transfer impedance are met.

1.5.3 PSAACR-F

The PS AACR-F for a channel shall meet the limits computed, to one decimal place, using the formulae of Table 6.

Table 6 - Formulae for PSAACR-F limits for a 1000 m channel

Frequency MHz	Minimum PSAACRF		
MHz	dB		
	E1	E2	E3
1 < <i>f</i> ≤ 20	57	67	67

Note: these values are met if coupling attenuation and transfer impedance are met.

1.6 Coupling attenuation

The coupling attenuation for the pair of a channel shall meet the limits computed, to one decimal place, using the formulae of Table 8. The limits shown in Table 9 are derived from the formulae at key frequencies.

See IEC62143-4-14 and IEC 61156-1 for testing procedures. It is possible to asses coupling attenuation by laboratory measurements of representative samples of channels assembled using their component and connector practices.

Table 8 – Coupling attenuation for a channel

Tubic o Coup	inig attenua	tion for a chamile
environment	Frequency	Minimum
	MHz	coupling
		attenuation
		dB
E3	1 < <i>f</i> ≤ 20	70
E2	1 < <i>f</i> ≤ 20	65
E1	1 < <i>f</i> ≤ 20	55

Note: IEC to be asked for measurement reference for values below 30 MHz

1.7 Transfer Impedance

environment	Frequency MHz	Max mOhm/m
E3	1 < <i>f</i> ≤ 20	20
E2	1 < <i>f</i> ≤ 20	50
E2	1 < f ≤ 20	50

1.8 DC loop Resistance

The DC loop resistance in an installation shall not exceed 45 Ohm.

1.9 Propagation delay

The propagation delay for the channel shall not exceed the limits computed, to three decimal places, using the formulae of Table 0.

Table 10 – Formulae for propagation delay limits for a 1000 m channel

Frequency	Maximum propagation delay
MHz	μ\$
<u>1 < <i>f</i> ≤ 20</u>	$10 \times \left[0,534+0,036/\sqrt{(f)}\right] + 10 \times 0,0025$

Note: only full duplex!