

Proposal for Very Short Reach Objective for Scale Up

Introducing 1060nm wavelength as option to meet CSD

Authors:

Eric Hegblom (Lumentum)
Ernest Muhigana (Lumentum)
Matt Peeters (Lumentum)
Matt Sysak (Lumentum)

September 4th, 2025
IEEE 802.3 200 Gb/s per Wavelength MMF PHYs Study Group Ad Hoc Meeting

Contribution outline

- Objective and Proposal
- Scale Up Interconnect (Backend XPU and accelerator ASIC)
- Motivation for 1060nm wavelength
- Conclusion

Supporters

Ali Ghiasi

Objective

- After IEEE 802.3 200G MMF CFI approval, this is a proposal to the Study Group to consider Very Short Reach objective for up to at least 10m targeting the Scale Up interconnect application (AI/ML GPU and accelerator ASICs)
 - During the preparations of the CFI, concept of VCSEL/PD arrays using longer wavelength,
 i.e. 1060nm and their technical benefits were introduced as option for such objective
 - The present contribution also supports the CSD that will be reviewed by the SG,
 specifically Broad Market Potential, Technical Feasibility, and Economic Feasibility
- Industry wide initiatives to investigate and define requirements for Scale Up interconnect (OIF, OCP, Ethernet Alliance, HoTI, Hot Chips, etc...).
 - Beyond 2028 need for very high capacity, high reliability and very low power <u>optical</u> interconnect for 500+ GPU/accelerator "row level" clusters
 - The IO capacities for such interconnect will quickly exceed bidirectional 50Tbps per ASIC

Custom ASIC and GPU forecast (Datacenter Only)

Permission for use courtesy of Alan Weckel, 650 Group

AI ASIC on 2Y refresh cycle with scale up IO capacity <u>doubling</u> from gen to gen

Use cases and connectivity examples

Now

Table 3-1 - Example calculation for a UALink_200 1.0 connected Pod

Parameter	Value	Notes Unidirectional I/O bandwidth for local accelerator connections		
Accelerator I/O Bandwidth	6.4T			
Number of Switches	16 Each accelerator connects to all switches in a full mesh			
Bandwidth per Link (accelerator BW / number of switches)	400G	Bandwidth per switch coming from an accelerator		
Link configuration (link bandwidth / 212.5G per link)	x2	Number of 212.5G lanes comprising the link		
Switch I/O Bandwidth	25.6T	Total unidirectional I/O bandwidt supported per switch		
Number of Accelerators in the Pod (switch capacity / bandwidth per link)	64	Number of accelerators connected to the switch		

Table 3-2 Current generation connectivity example

Configurations for 425G per Link		Lanes per Link				
Configurations for 425G per Link	x2	x4	x8	x16	x32	
ASIC Electrical Interface Type	UALink_200 1.0	UCIe 3.0	UCIe 3.0	UCIe 3.0	UCIe 3.0	
Transceiver Location	Pluggable On-Board Co-packaged	Co-packaged	Co-packaged	Co-packaged	Co-packaged	
ASIC Electrical Interface Lane Rate [G]	212.5	32	32	32	32	
Optical Lane Rate [G]	212.5	106.25	53.125	26.5625	13.28125	
Link Options	N	imber of Cu Pairs or Fibers/Cores Required (Tx+Rx)				
Cu pair (KR/CR) or 1λ per fiber (PSM/DR)	4	8	16	32	64	
1λ per fiber (BiDir2)	2	4	8	16	32	
2λ per fiber (CWDM2)	2	4	8	16	32	
2λ per fiber (BiDir4)	1	2	4	8	16	
4λ per fiber (CWDM4, WDM4)		2	4	8	16	
8λ per fiber (WDM8)			2	4	8	
16λ per fiber (WDM16)				2	4	

Near Term

Table 3-3 Hypothetical next generation Pod

Parameter	Value	Notes Unidirectional I/O bandwidth for local accelerator connections		
Accelerator I/O Bandwidth	12.8T			
Number of Switches	16	Each accelerator connects to all switches in a full mesh		
Bandwidth per Link (accelerator BW / number of switches)	800G	Bandwidth per switch coming from an accelerator		
Link configuration (link bandwidth / 212.5G per link)	x4	Number of 212.5G lanes comprising the link		
Switch Capacity	51.2T	Total unidirectional I/O bandwidth supported by one switch		
Number of Accelerators in the Pod (switch capacity / bandwidth per link)	64	Number of 212.5G lanes comprising the link		

Table 3-5 - Next generation connectivity example with 425G lanes

Configurations for 850G per Link	Lanes per Link					
Configurations for 650G per Link	x1	x2	x4	x8	x16	
ASIC Electrical Interface Type	UALink @ 400G	UALink_200 1.0	UCle 3.0	UCIe 3.0	UCle 3.0	
Transceiver Location	Pluggable On-Board Co-packaged	Pluggable On-Board Co-packaged	Co-packaged	Co-packaged	Co-packaged	
ASIC Electrical Interface Lane Rate [G]	425	212.5	32	32	33	
Optical Lane Rate [G]	425	212.5	106.25	53.125	26.562	
Link Options		Number of Cu Pairs or Fibers/Cores Required (Tx+Rx)				
Cu pair (KR/CR) or 1λ per fiber (PSM/DR)	2	4	8	16	3:	
1λ per fiber (BiDir2)	1	2	4	8	10	
2λ per fiber (CWDM2)		2	4	8	16	
2λ per fiber (BiDir4)		1	2	4		
4λ per fiber (CWDM4, WDM4)			2	4		
8λ per fiber (WDM8)				2		

Permission for use courtesy of Jeff Hutchins, Ranovus

200G MMF is the PMD of choice for most scale up protocols (Ethernet, UALink and NVLink)

Motivation for 1060nm from VCSEL + PD perspective (I)

850nm

- First standard, 1999
- Set from fiber / laser technology in 90's.

940nm

- 3D sensing introduced, 2017
- Pushes industry to <u>HVM billions of emitters shipped</u>

980nm

- Automotive introduced, 2021
- Forces High temperature, high reliability interconnects inside automobiles

1060nm

- High density interconnect proposed, 2025
- Builds on 3Ds, Automotive, adds bandwidth, density, signal integrity, manufacturability

Motivation for 1060nm from VCSEL + PD perspective (II)

- Higher intrinsic RF bandwidth in 1000-1100nm range best (operating) power efficiency
- Proven 940nm reliability, 1130nm showing even better reliability performance

1060nm VCSEL technical benefits summary

Metric	850nm	1060nm	Context	
Fiber BW	+	-	Help needed from fiber manufacturers to confirm reach at 1060nm	
Wall plug efficiency	+	+	Roughly equivalent efficiency, slightly lower voltage at 1060nm.	
Emitter BW	-	+	Strained InGaAs active layer design enables 1.3x intrinsic BW, higher differential gain and efficiency	
Signal Integrity	-	+	Flip chip integration removes group delay impedance issues known with wire-bonding	
Reliability	-	+	Flip chip and channel sparing takes FIT below 1. Al free active region enable high temp/high power reliability.	
Detector technology	-	+	Flip chip detectors - higher speed / better responsivity than wire-bonded equivalent	
Density	-	+	2D VCSEL arrays for high density interconnect including channel sparing	
Thermal management	-	+	>20C lower laser junction, >20C lower ASIC temperature from flip chip driver/TIA assemblies	
Manufacturability	-	+	Flip chip for mass reflow or TCB, also enables high accuracy placement for assembly	
Volume	-	+	Builds on largest VCSEL deployments in history, reuses MFG partners, test, assembly supply chain	

1060nm VCSEL | Example L-I Curves over Temperature (I)

Example DC L-I Curves for Top-Emitting VCSELs vs. Heat-Sink Temperature

similar ~5um OA and 25°C slope eff. devices selected

 1060nm device with higher strain and deeper wells are more linear at higher current and temperature

1060nm VCSEL | Example L-I Curves over Temperature (II)

Excellent performance with >155C operating temperature

Industry Example – High Reliability to 1065nm and Bottom-Emitting

Rel. Power (1) , Im=6mA

- 170°C (high acceleration) 8mA stress
- Flip-chip bottom emitting

Samples from 4 different wafers (4 different EPI designs): 0 fails after 500hrs

Example – Demonstrating High Reliability to 1175nm

- Early reliability of designs targeting datacom applications
- VCSELs run for ~16k hours with no significant degradation
 - Provided confidence in reliability of Lumentum InGaAs based active region design. Excellent reliability for 1060nm or below was proven

> 950nm VCSEL OM4 and OM5 fiber constraints

Need to specify OM4/OM5 fiber EMB beyond 950nm vs achievable reach for "-VSR"

Conclusion

- We demonstrated industry need for optical interconnect targeting next gen AI/ML clusters and the opportunity to leverage new technologies including advanced packaging
- Proposing IEEE802.3 200G MMF SG to approve the objective at a minimum reach of 10 m (VSR) and technical benefits of 1060 nm wavelength VCSEL and the ability to enable the proposed VSR objective
 - We also recommend objectives for up to 30 m and up to 50 m reaches. We believe these longer-reach objectives will be best met with 850 nm wavelength VCSELs
- The proposal assumes using broadband PDs designed to support 850 to 1100nm wavelengths
- Calling for assistance from fiber manufacturers to provide EMB guidance on existing OM4/OM5 fibers at 1060nm wavelengths
- Adding such objective with set IEEE802.3 for next gen Al interconnect needs. The project should not be restricted 'transceiver focused' 850nm

Proposed Objectives (using IEEE802.3db and .df objectives as a template)

- Define a physical layer specification that supports 200 Gb/s operation over 1 pair of MMF with lengths up to at least 10 m
- Define a physical layer specification that supports 400 Gb/s operation over 2 pairs of MMF with lengths up to at least 10 m
- Define a physical layer specification that supports 800 Gb/s operation over 4 pairs of MMF with lengths up to at least 10 m
- Define a physical layer specification that supports 1.6 Tb/s operation over 8 pairs of MMF with lengths up to at least 10 m

Thank you

