200 Gb/s 30m over OM4 Objective and Baseline link proposals

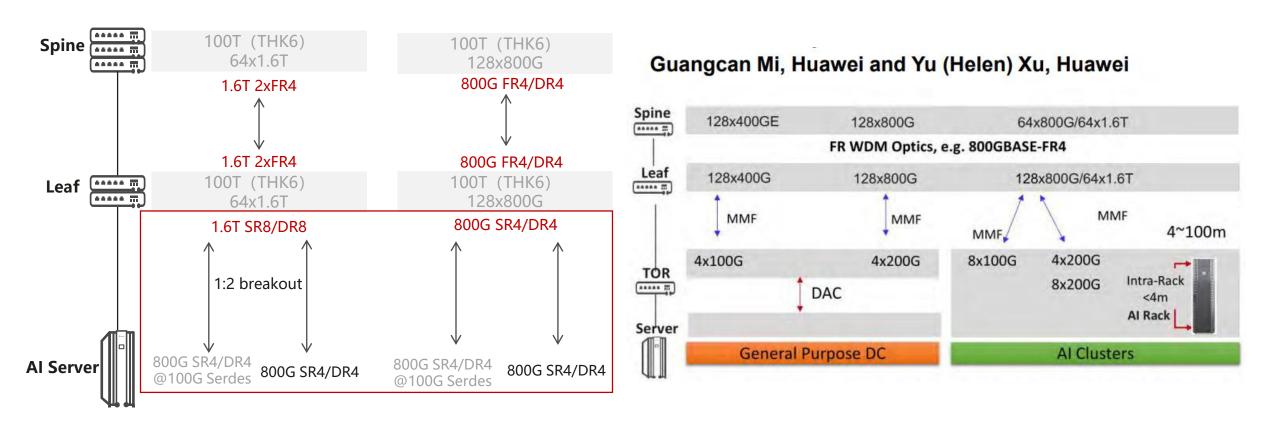
Eric Bernier, Lemon Geng, Helen Xu (Huawei)

17 September 2025

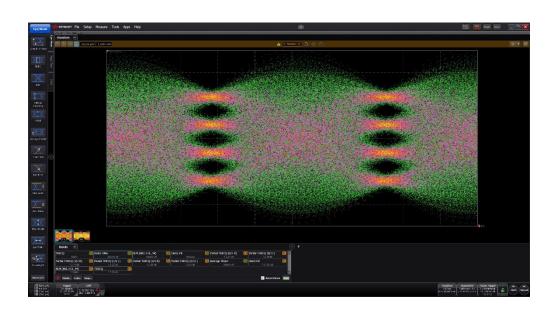
IEEE 802.3 200 Gb/s per Wavelength MMF PHYs Study Group Interim Meeting

Supporters

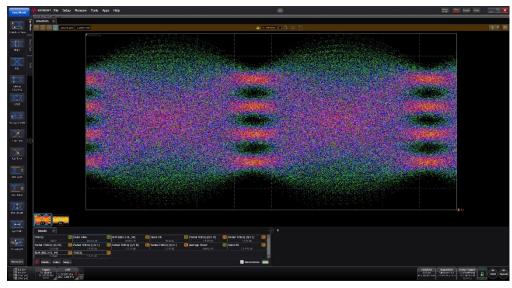
- Chris Cole, Coherent
- Roberto Rodes, Coherent
- Chris Kocot, Coherent
- Mike Dudek, Marvell, Supporter of the Objective
- Ramana Murty, Broadcom
- Mao Mingwang, Meituan
- Tiger Ninomiya, Accelink
- Ali Ghiasi, Ghiasi Quantum LLC
- Jeffery Maki, Juniper/HPE
- Ernest Muhigana, MACOM
- Sun Yi, Lightera
- Pavel Zivny, MultiLane
- Angela Lambert, Corning, Supporter of the Objective
- Vince Ferretti, Corning, Supporter of the Objective
- Flavio Rodrigues Marques, Lightera


Overview

- Contribution in support of:
 - Objective(s) for 200 Gb/s operation over 30 m OM4
 - CSD:
 - Broad Market Potential
 - Technical Feasibility
 - Economic Feasibility
 - Baseline Proposal for a 30 m link over OM4
 - Considerations of timeline in the choices of objectives

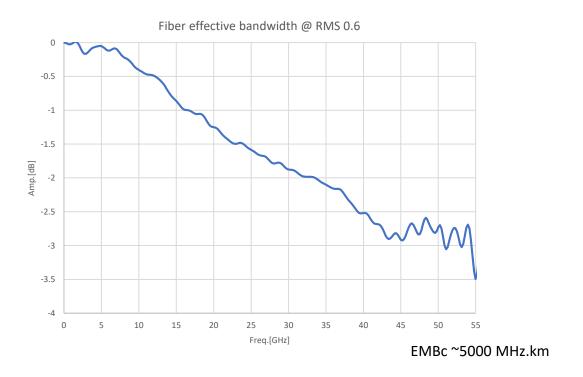

200 Gb/s/Lane application scenarios

The network architecture of general-purpose DC and AI clusters will gradually upgrade to 1.6 Tb/s.


VCSEL are an excellent choice for SR due to low cost and low power consumption characteristics.

VCSEL Transmission @200 Gb/s over 30m

106G baud with PRBS13



Back-to-Back (~TP2)

Optical eye diagram after 30m fiber transmission

- After 30m of OM4 fiber transmission, we obtained a relatively clear eye diagram.
- There are several ways to further improve the system performance
 - ✓ Optimize TX, tighten the RMS of VCSEL... Those are early results.

OM4 Fiber effective bandwidth

- We tested one 30m OM4 fiber, the effective bandwidth is 55 GHz, which is 1.035x of Nyquist frequency. (Assuming a illustrative band rate of 106.25Gbd)
- By tightening RMS of VCSEL, the EMB of the MMF can be further increased.

Objective Recommendation

- 1- Broad application for MMF links in AI clusters and in datacenters
- 2- OM4 Fiber has adequate bandwidth to support 30m of transmission at 200 Gb/s
- 3- VCSEL technology at 200 Gb/s is mature and make the links possible
- 4- Technology exist is widely available leading itself to a "rapid" transition to standard.

Recommendation is for Objectives:

- Define a physical layer specification that supports 200 Gb/s operation over 1 pair of MMF with lengths up to at least 30 m
- Define a physical layer specification that supports 400 Gb/s operation over 2 pairs of MMF with lengths up to at least 30 m
- Define a physical layer specification that supports 800 Gb/s operation over 4 pairs of MMF with lengths up to at least 30 m
- Define a physical layer specification that supports 1.6 Tb/s operation over 8 pairs of MMF with lengths up to at least 30 m

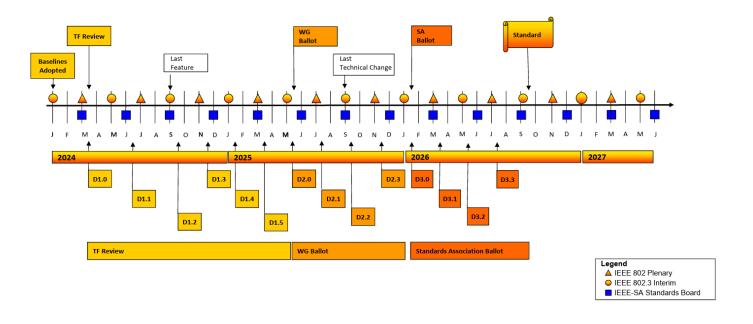
Illustrative Baseline Preview

Illustrative Transmitter Specifications

	200GBASE-SR1 400GBASE-SR2	
Description	800GBASE-SR4 1.6TBASE-SR8	Unit
Signaling rate, each lane (range)	TBD	GBd
Modulation Format	PAM4	
Lane wavelengths (range)	844~863	nm
RMS spectral width	TBD	nm
Average launch power, each lane (max)	TBD	dBm
Average launch power, each lane (min)	TBD	dBm
Outer Optical Modulation Amplitude (OMA _{outer}), each lane(max)	TBD	dBm
Outer Optical Modulation Amplitude (OMA _{outer}), each lane(min)	TBD	
for TDECQ < 1.8 dB	TBD	dBm
for 1.8 dB ≤ TDECQ ≤ TDECQ (max)	TBD	dBm
Transmitter and dispersion eye closure (TDECQ), each lane (max)	TBD	dB
TECQ (max)	TBD	dB
Average launch power of OFF transmitter, each lane (max)	-30	dBm
Transmitter power excursion, each lane (max)	TBD	dB
Extinction ratio, each lane, (min)	TBD	dB
Transmitter transition time (max)	8	ps
Transmitter over/under-shoot (max)	TBD	%
RIN _x OMA (max)	TBD	dB/Hz
Optical return loss tolerance (max)	TBD	dB
Encircled flux	≥86% at 19 um ≤30% at 4.5 um	dB

Illustrative Receiver Specifications

Description	200GBASE-SR1 400GBASE-SR2 800GBASE-SR4 1.6TBASE-SR8	Unit
Signaling rate, each lane (range)	TBD	GBd
Modulation Format	PAM4	
Lane wavelengths (range)	844~863	nm
Damage threshold, each lane	TBD	dBm
Average receive power, each lane (max)	TBD	dBm
Average receive power, each lane (min)	TBD	dBm
Receive power, each lane (OMA _{outer}) (max)	TBD	dBm
Receiver reflectance (max)	TBD	dB
Receiver sensitivity (OMA _{outer}), each lane (max)		
for TECQ < 1.8dB	TBD	dBm
for 1.8 dB ≤ TECQ ≤ SECQ	TBD	dBm
Stressed receiver sensitivity (OMA _{outer}), each lane (max)	TBD	dBm
Conditions of stressed receiver sensitivity test:		
SECQ	4.4	dB
OMA _{outer} of each aggressor lane ^c	3.5	dBm

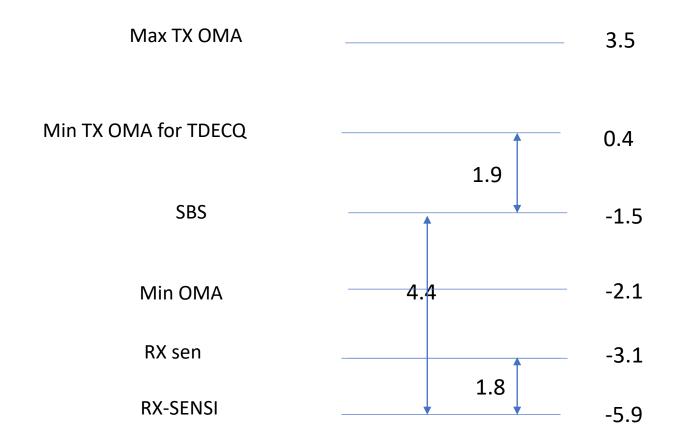

Illustrative Link Budget

Description	200GBASE-SR1 400GBASE-SR2 800GBASE-SR4 1.6TBASE-SR8 OM4	Unit
Effective modal bandwidth at 850 nm	4700	MHz.km
Power budget (for max TDECQ)	TBD	dB
Operating distance	0.5 To 30	m
Channel insertion loss	TBD	dB
Maximum discrete reflectance	-35	dB
Allocation for penalties (for max TDECQ)	TBD	dB
Additional insertion loss allowed	TBD	dB

Consideration

Timeline

Adopted IEEE P802.3dj Timeline (14 Nov 2024)


- -802.3dj (200Gb/s/Lane over SMF) is tracking for a fall 2026 availability.
- -For a 200Gb/s/Lane over MMF to be relevant it cannot lag far behind

Summary

- 1- Broad application for MMF links in AI clusters and in datacenters
- 2- OM4 Fiber has adequate bandwidth to support 30m of transmission at 200 Gb/s
- 3- VCSEL technology at 200 Gb/s is mature and make the links possible
- 4- Technology exist is widely available leading itself to a "rapid" transition to standard.
- 5- There is a strong opportunity for broad consensus on supporting objectives for 200 Gb/s over 30 m OM4.
- 6- While rapid progress is possible, significant technical work remains to be done.
- 7- The key is to define a scope wide enough to be meaningful yet narrow enough to ensure rapid development, with room for future extensions.

Appendix

Illustrative Link Budget

