

# Proposal for 200Gbps 30m and 50m MM Reach objectives using 1060nm.

#### **Authors:**

Eric Hegblom (Lumentum)

**Ernest Muhigana (Lumentum)** 

Matt Peters (Lumentum)

Matt Sysak (Lumentum)

#### **Contribution outline**

- Revised Objective and Proposal
- Scale Up Interconnect (Backend XPU and accelerator ASIC)
- Motivation for 1060nm wavelength
- Conclusion



## **Supporters**

- Chris Cole, Coherent
- Ali Ghiasi, Ghiasi Quantum
- Ram Huggahalli, Microsoft
- Fotini Karinou, Microsoft
- Chris Kocot, Coherent
- Daniel Kuchta, Nvidia
- Jeffery Maki, Juniper Networks / HPE
- Roberto Rodes, Coherent
- Ashkan Seyedi, Nvidia
- Hans Spruit, TRUMPF Photonic Components B.V.
- Craig Thompson, Nvidia



## **Objective**

- This is a <u>revised</u> proposal for 30m and 50m reach objectives for high density Al networks.
  - During CFI preparations, we proposed longer wavelength VCSEL/PD as an option 200G MM reach objective. This proposal updates the reach to cover 30 and 50m.
  - Our intent is to meet the Broad Market Potential, Technical Feasibility, and Economic Feasibility CSD objectives.
- The proposal written with the scale up optical interconnect as primary focus,
   which is mainly a greenfield deployment not bound by backwards compatibility



## **Custom ASIC and GPU forecast (Datacenter Only)**





Permission for use courtesy of Alan Weckel, 650 Group

■ Al ASIC on 2Y refresh cycle with scale up IO capacity doubling from gen to gen



## Use cases examples

#### **Now**

Table 3-1 - Example calculation for a UALink\_200 1.0 connected Pod

| Parameter                                                                   | Value | Notes                                                          |
|-----------------------------------------------------------------------------|-------|----------------------------------------------------------------|
| Accelerator I/O Bandwidth                                                   | 6.4T  | Unidirectional I/O bandwidth for local accelerator connections |
| Number of Switches                                                          | 16    | Each accelerator connects to all switches in a full mesh       |
| Bandwidth per Link<br>(accelerator BW / number of switches)                 | 400G  | Bandwidth per switch coming from an accelerator                |
| Link configuration<br>(link bandwidth / 212.5G per link)                    | x2    | Number of 212.5G lanes comprising the link                     |
| Switch I/O Bandwidth                                                        | 25.6T | Total unidirectional I/O bandwidth supported per switch        |
| Number of Accelerators in the Pod<br>(switch capacity / bandwidth per link) | 64    | Number of accelerators connected to the switch                 |

Table 3-2 Current generation connectivity example

| Configurations for 425G per Link         | Lanes per Link                       |                                                    |             |             |             |  |
|------------------------------------------|--------------------------------------|----------------------------------------------------|-------------|-------------|-------------|--|
| Configurations for 4256 per Link         | x2                                   | x4                                                 | x8          | x16         | x32         |  |
| ASIC Electrical Interface Type           | UALink_200 1.0                       | UCIe 3.0                                           | UCIe 3.0    | UCIe 3.0    | UCIe 3.0    |  |
| Transceiver Location                     | Pluggable<br>On-Board<br>Co-packaged | Co-packaged                                        | Co-packaged | Co-packaged | Co-packaged |  |
| ASIC Electrical Interface Lane Rate [G]  | 212.5                                | 32                                                 | 32          | 32          | 32          |  |
| Optical Lane Rate [G]                    | 212.5                                | 106.25                                             | 53.125      | 26.5625     | 13.28125    |  |
| Link Options                             | 1                                    | umber of Cu Pairs or Fibers/Cores Required (Tx+Rx) |             |             |             |  |
| Cu pair (KR/CR) or 1λ per fiber (PSM/DR) | 4                                    | 8                                                  | 16          | 32          | 64          |  |
| 1λ per fiber (BiDir2)                    | 2                                    | 4                                                  | 8           | 16          | 32          |  |
| 2λ per fiber (CWDM2)                     | 2                                    | 4                                                  | 8           | 16          | 32          |  |
| 2λ per fiber (BiDir4)                    | 1                                    | 2                                                  | 4           | 8           | 16          |  |
| 4λ per fiber (CWDM4, WDM4)               |                                      | 2                                                  | 4           | 8           | 16          |  |
| 8λ per fiber (WDM8)                      |                                      |                                                    | 2           | 4           | 8           |  |
| 16λ ner fiber (WDM16)                    |                                      |                                                    |             | 2           | 4           |  |

#### **Near Term**

Table 3-3 Hypothetical next generation Pod

| Parameter                                                                   | Value | Notes                                                          |
|-----------------------------------------------------------------------------|-------|----------------------------------------------------------------|
| Accelerator I/O Bandwidth                                                   | 12.8T | Unidirectional I/O bandwidth for local accelerator connections |
| Number of Switches                                                          | 16    | Each accelerator connects to all switches in a full mesh       |
| Bandwidth per Link<br>(accelerator BW / number of switches)                 | 800G  | Bandwidth per switch coming from<br>an accelerator             |
| Link configuration (link bandwidth / 212.5G per link)                       | x4    | Number of 212.5G lanes comprising the link                     |
| Switch Capacity                                                             | 51.2T | Total unidirectional I/O bandwidth supported by one switch     |
| Number of Accelerators in the Pod<br>(switch capacity / bandwidth per link) | 64    | Number of 212.5G lanes comprising the link                     |

Table 3-5 Next generation connectivity example with 425G lanes

| Configurations for 850G per Link         | Lanes per Link                       |                                                     |             |             |             |
|------------------------------------------|--------------------------------------|-----------------------------------------------------|-------------|-------------|-------------|
| Configurations for 6500 per Link         | x1                                   | x2                                                  | х4          | х8          | x16         |
| ASIC Electrical Interface Type           | UALink@400G                          | UALink_200 1.0                                      | UCIe 3.0    | UCIe 3.0    | UCIe 3.0    |
| Transceiver Location                     | Pluggable<br>On-Board<br>Co-packaged | Pluggable<br>On-Board<br>Co-packaged                | Co-packaged | Co-packaged | Co-packaged |
| ASIC Electrical Interface Lane Rate [G]  | 425                                  | 212.5                                               | 32          | 32          | 32          |
| Optical Lane Rate [G]                    | 850                                  | 425                                                 | 212.5       | 106.25      | 53.125      |
| Link Options                             |                                      | Number of Cu Pairs or Fibers/Cores Required (Tx+Rx) |             |             |             |
| Cu pair (KR/CR) or 1λ per fiber (PSM/DR) | 2                                    | 4                                                   | 8           | 16          | 32          |
| 1λ per fiber (BiDir2)                    | 1                                    | 2                                                   | 4           | 8           | 16          |
| 2λ per fiber (CWDM2)                     |                                      | 2                                                   | 4           | 8           | 16          |
| 2λ per fiber (BiDir4)                    |                                      | 1                                                   | 2           | 4           | 8           |
| 4λ per fiber (CWDM4, WDM4)               |                                      |                                                     | 2           | 4           | 8           |
| 8λ per fiber (WDM8)                      |                                      |                                                     |             | 2           | 4           |
| 16λ per fiber (WDM16)                    |                                      |                                                     |             |             | 2           |

Permission for use courtesy of Jeff Hutchins, Ranovus

200G MMF PHY is a candidate for most scale up protocols (Ethernet, UALink and NVLink)



## Why 1060nm?

850nm

- First standard, 1999
- Set from fiber / laser technology in 90's.

940nm

- 3D sensing introduced, 2017
- Pushes industry to <u>HVM billions of emitters shipped</u>

980nm

- Automotive introduced, 2021
- Forces High temperature, high reliability interconnects inside automobiles

1060nm

- High density interconnect proposed, 2025
- Builds on 3Ds, Automotive, adds bandwidth, density, signal integrity, manufacturability



### 1060nm VCSEL technical benefits



| Metric               | 850nm | 1060nm | Context                                                                                                         |
|----------------------|-------|--------|-----------------------------------------------------------------------------------------------------------------|
| Fiber BW             | +     | -      | Working fiber manufacturers on best path to 30m and 50m reach at 1060nm                                         |
| Wall plug efficiency | +     | +      | Roughly equivalent efficiency, slightly lower voltage at 1060nm.                                                |
| Emitter BW           | -     | +      | Strained InGaAs active layer design enables 1.3x intrinsic BW, higher differential gain and efficiency          |
| Signal Integrity     | -     | +      | Flip chip integration removes group delay impedance issues known with wire-bonding                              |
| Reliability          | -     | +      | Flip chip and channel sparing takes FIT below 1. Al free active region enable high temp/high power reliability. |
| Detector technology  | -     | +      | Flip chip detectors - higher speed / better responsivity than wire-bonded equivalent                            |
| Density              | -     | +      | 2D VCSEL arrays for high density interconnect including channel sparing                                         |
| Thermal management   | -     | +      | >20C lower laser junction, >20C lower ASIC temperature from flip chip driver/TIA assemblies                     |
| Manufacturability    | -     | +      | Flip chip for mass reflow or TCB, also enables high accuracy placement for assembly                             |
| Volume               | -     | +      | Builds on largest VCSEL deployments in history, reuses MFG partners, test, assembly supply chain                |



## 1060nm VCSEL | Example L-I Curves over Temperature (II)



Excellent performance with >155C operating temperature



## Industry Example – High Reliability to 1065nm and Bottom-Emitting



- 1/0°C (high acceleration) 8mA stress
- Flip-chip bottom emitting









Samples from 4 different wafers (4 different EPI designs): 0 fails after 500hrs



## Fiber requirements at 1060nm



- Worst case <u>standard OM4</u> EMB at 1060nm is estimated to ~820MHz\*km. This suggests approximatly 10-meter reach at 200Gbps which does not meet 30 and 50m objectives
- We are proposing a new fiber with high enough EMB for 30m and 50m at 1060nm.



#### Conclusion

- We clarified the broad market potential for an optical interconnect targeting next gen Al datacenter clusters and the opportunity to leverage new optics technologies including advanced packaging
- Proposing IEEE802.3 200G MMF SG to approve both 30m and 50m objectives
  - Recommending the TF to consider using both 850 to 1060 nm wavelengths (with the implication of introducing two types of fiber)
- The proposal assumes using broadband PDs designed to support 850 to 1060nm wavelengths
- Calling for fiber manufacturers to contribute with information to solidify the path towards optimized fibers for 1060 nm
  - Also Requesting that the IEEE802.3 provides liaison report to the IEC SC86A/WG1 to investigate the possibility and timeline of such option



## Thank you

