25G Ethernet Study Group - RS/PCS/FEC

IEEE 802.3 25G Ethernet SG - Arch Ad Hoc Layering and Gaps

Eric Baden (ericb at broadcom com), presenting
Cedrik Begin (cbegin at cisco com),
Yong Kim (ybkim at broadcom com),
Gary Nicholl (gnicholl at cisco com)

25G Ethernet Study Group - RS/PCS/FEC

Supporters

Brad Booth, Microsoft <name>, Affiliation
John D'Ambrosia, Dell
Joel Goergen, Cisco
Peter Jones, Cisco
Mark Nowell, Cisco
Rob Stone, Broadcom

25G Ethernet Study Group - RS/PCS/FEC

25G PCS Thoughts - recap

- Recap from Sept Interim (not to revisit)
- Both 3 m and 5 m reach adopted as objectives (implicit ToR and InterR)
- FEC/no FEC (implicit sub-set objectives of latency, cost, compatibilities
- Views
- 10G speed up
- 100G (. 3 bj) quarter lane use
- Desires
- NICs - implementations for $10 \mathrm{G} / 25 \mathrm{G}$ and 40G
- Switches - implementations for 100G/40G/25G and 10G

25G Ethernet Study Group - RS/PCS/FEC

General and Common Ideas - Recap

- 64/66B.
- Lane rate of $25.78125 G$
- Alignment Marker eases the use of FEC (not FEC capability).
- BIP has benefits. Bug-fix category or nice to have?
- Optional Auto-negotiation determines use of FEC and training, among other things.

25G Ethernet Study Group - RS/PCS/FEC

[Sub-]Layering

- $25 \mathrm{GRS} / \mathrm{PCS} / \mathrm{FEC}$ considerations.

10GBASE-R	25G	40GBASE-R	$\begin{aligned} & \text { 100BASE-R } \\ & \text { 802.3bj } \end{aligned}$
RS - CL46	25G	RS - CL81	RS - CL81
XGMII		xxMII	xxMII
PCS - CL49		PCS - CL82	PCS - CL82
FEC - CL74 optional		FEC - CL74 optional	FEC - CL91
PMA		PMA	PMA

25G Ethernet Study Group - RS/PCS/FEC

[Sub-]Layer Elements

- Closer look at the data path elements of 10GBASE-R, 40G/100G BASE-R, and recent .3bj work.
- Examine RS/PCS/FEC datapath elements adopted for 25G Ethernet use, individual clause basis and also together.
- Evaluate the choices for relevancy, technical merits, and ease of implementation.

25G Ethernet Study Group - RS/PCS/FEC

Details of 25G Sub-Sub-Layering considerations

25G Ethernet Study Group - RS/PCS/FEC

25GE PCS using 10GE (CL49) building blocks

25GE no FEC

- 4 byte MII (CL46)
- For a 25GE without RS FEC, can use 10GE function as is, i.e. complete reuse (simply run $2.5 x$ faster).
- To aid RS FEC, would add alignment marker insertion and removal in the 25GE PCS. (yellow blocks)

25G Ethernet Study Group - RS/PCS/FEC

25GE PCS using 40/100GE (CL82) building blocks

- 8 byte MII (CL81).
- Some function reuse, however would remove (orange blocks):
- multiple per lane logic
- block distribution and reorder/deskew.
- AM insertion/removal logic would need to change (yellow blocks) in order to reflect different rates of AM insertion/removal

25G Ethernet Study Group - RS/PCS/FEC

Changes to RS FEC (CL91) for 25GE (8B vs. 4B)

- For both options would remove (orange):
- Per lane logic
- Block distribution and deskew logic.
- For both options would need to change AM related logic to reflect difference in number of AMs and periodicity (yellow).
- Only difference between the two options is that the clause 49 based option would need the transcoders to not restrict the transcoding of its additional block codes.

25G Ethernet Study Group - RS/PCS/FEC

Summary

- Clause 49 is the better starting point for a 25GE PCS.
- Even in the case where an alignment marker is inserted to aid the RS FEC
- Changes are required to clause 91 FEC, whether or not the 25 GE PCS is based on clause 49 or clause 82
- Magnitude of changes are equivalent.

25G Ethernet Study Group - RS/PCS/FEC

25 G directions with optional FEC

PCS/FEC	10G	25G without any FEC	25G with CL74 FEC	$\begin{aligned} & \text { 25G with } \\ & \text { CL91 RS } \\ & \text { FEC } \end{aligned}$	40G	100G
Block Coding		64/66B				
Lanes	1	1	1	1	4	4
RS	CL46 (4B)	CL46 (4B)	CL46 (4B)	CL46 (4B)	$\begin{gathered} \text { XLGMII } \\ (8 B) \end{gathered}$	CGMII (8B)
PCS	CL49	CL49	CL49	CL49	CL82	CL82
Alignment Markers	N	N	N	Y	Y	Y
Trans Code	N/A	N/A	N/A	256/257B	N/A	256/257B
Reach		3+m		$5+m$		
Latency		Low	Medium	High		

25G Ethernet Study Group - RS/PCS/FEC

ALIGNMENT MARKERS (AMS) - REVIEW

- Used by MLD PCS to De-skew across lanes
- Inserted into data stream in groups, based on the number of PCS lanes.
- IDLEs are deleted to offset bandwidth increase.
- One AM per PCS Lane
- Four PCS lanes in 40G. Twenty PCS lanes in100G.
- AMs in 40G are different from AMs in 100G.
- DC Balanced (same number of 1's as 0's)
- 'Many' transitions for CDR maintenance.
- Spaced 16383 * Number of PCS lanes apart.
- The 'space' is the number of 66 bit blocks between the end of one group of AMs and the beginning of the next group of AMs.
- 40G PCS: AMs are inserted every 16383Blocks*66bits/Block*4PCS Lanes/(4*10.3125G) ${ }^{\sim}$ ~ 105 us
- 100G PCS: AMs are inserted every 16383Blocks*66bits/Block*20PCS Lanes/($10 * 10.3125 \mathrm{G})=\sim 210$ us
- Used with CL91 FEC to determine Code Word (CW) boundaries
- A CW is 5280 bits. Equivalent to $80-66$ bit blocks.
- 100G: $16384^{*} 66 * 20 / 5280=4096$.
- For 100G with CL91, AMs appear every 4096 CWs
- BIPs provide some link quality checking on per PCS Lane basis.
- Parity doesn't always work in the presence of multiple bit errors.

25G Ethernet Study Group - RS/PCS/FEC

ALIGNMENT MARKERS (AMS) - 25G PROPOSAL

- Only when CL91 is enabled, periodically insert 4 AMs
- AMs are Required for use with CL91 FEC to determine Code Word (CW) boundaries
- Four consecutive AMs are Required for use with CL91 FEC transcoding
- Simplifies implementations not requiring CL91 FEC
- Delete IDLEs to offset bandwidth increase
- Space AMs to match 100G spacing, and meet CL91 needs
- 25G: $16384 * 5 * 66 / 5280=1024$.
- AMs appear every 1024 CWs
- 16384Blocks*66bits/Block*5/(2.5*10.3125G) $=\sim 210$ us
- Re-use AM0, AM1, AM2, AM3 from 40G CL82 PCS
- Known, simple, good properties (see previous slide)
- Different from 100G AMs (avoids any ambiguity)
- BIPs not needed with CL91
- Replace with fixed values?

25G Ethernet Study Group - RS/PCS/FEC

THANK YOU!

