Using Ensemble NRZ Coding for 400GE Electrical Interfaces

Brian Holden Kandou Bus, S.A. brian@kandou.com

IEEE 802.3 400GE Study Group May 17, 2013 Victoria, BC

- This presentation includes technology that may be the subject of multiple patent applications, applications in process, and patents by Kandou Bus, S.A.
- Assuming that this Study Group results in a PAR, that Kandou Bus, S.A. is committed to filing an Letter of Assurance against that PAR. (IEEE Patcom will not accept a LOA against a study group.)
- That LOA will guarantee that licenses to patents derived from these applications will be available on a Reasonable And Non-Discriminatory basis, should Kandou's technology be adopted into the 400GE specification

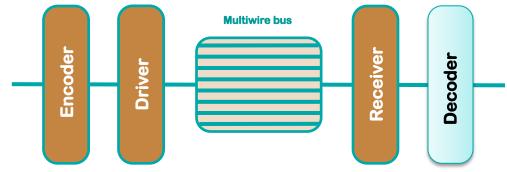
•

٠

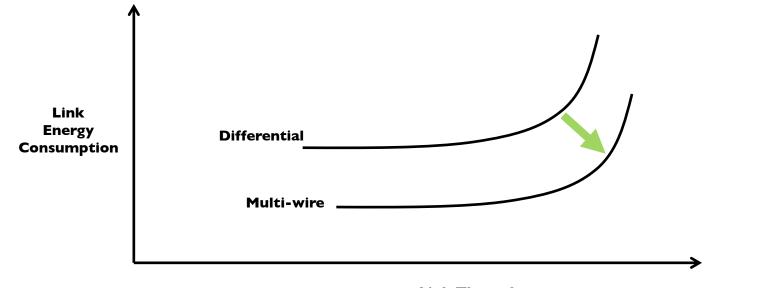
This proposal addresses the technical feasibility of 400GE backplane & module electrical I/F

- Having an electrical backplane and module I/F for 400GE are highly desirable objectives
- During the CFI period, discussions have focused on a 16 wire interface
 - 51 GBaud NRZ is one possibility
 - 26 GBaud PAM-4 is another possibility
- The 8-wire interface used by 802.3ap and 802.3bj was thought to be immediately infeasible.
 - A differential solution would require 100+ Gb/s links. •

Technical feasibility of 400GE backplane & module electrical I/F (cont.)


- **Pursuing 51 Gb/s for 400GE electrical interfaces is asking for** problems
 - The semiconductor processes to support 51 Gb/s are not here yet and are not likely to emerge for some years.
 - The short wavelength of 51 Gb/s signals makes them fragile
 - 51 Gb/s DFEs will be hard to implement
 - These problems will be especially acute with 51 Gb/s backplanes ٠
- The necessary unrolled portion of PAM-4 DFEs will get hard to • implement at 26 Gbaud
 - Two clocks of unrolling results in 16 speculative values •
- **Ensemble NRZ presents an alternative that makes these** • interfaces more technically feasible

Ensemble NRZ proposal


- We are proposing the use of a particular form of multi-wire signaling called Ensemble NRZ signaling for use in the 400GE backplanes
 - Ensemble NRZ decreases the needed symbol rate of links through the use of a four-wire ensemble.
 - If Ensemble NRZ is used for 400GE backplanes, the symbol rate will be 34 GBaud for a 16 wire, 12 lane interface
 - 16 wires, eight lanes of NRZ at 51 GBaud delivers the same bandwidth
 - 34 is much less than 51
 - Ensemble NRZ receivers are reference-less
- The channel for Ensemble NRZ is different
 - Ensemble NRZ requires a low skew group of 4 wires.
 - The optimal channel configurations are 3 dimensional.
- Ensemble NRZ lets you keep NRZ

Overview of general multi-wire Signaling

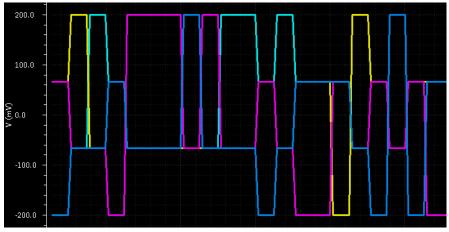
- Multi-wire signaling delivers high-speed and energy efficient I/O and serial links
 - Allows a variety of combinations of 1.5-4x of the speed with $\frac{1}{2}$ to $\frac{1}{4}$ of the line power
 - Power-efficient multi-wire driver and receiver architectures are matched to the signaling method
- Supports good signal integrity with excellent CM, XTLK & SSO noise resistance
 - Can reduce the number of active aggressors by code design
- Provides high pin efficiency
- Delivers robust, reference-less receivers
 - Some receivers do not need a decoder (including the Ensemble NRZ receivers)
- Requires an ensemble composed of a low-skew group of wires
- Kandou has produced a prototype using a more complex code that delivers 128 Gb/s over 8 wires at 3.8 pJ/bit over a -15 dB channel

Multi-wire techniques advance the Energy-Throughput Frontier

Link Throughput

Increases the throughput and lowers the energy consumption at the same time.

The Ensemble NRZ Transmitter

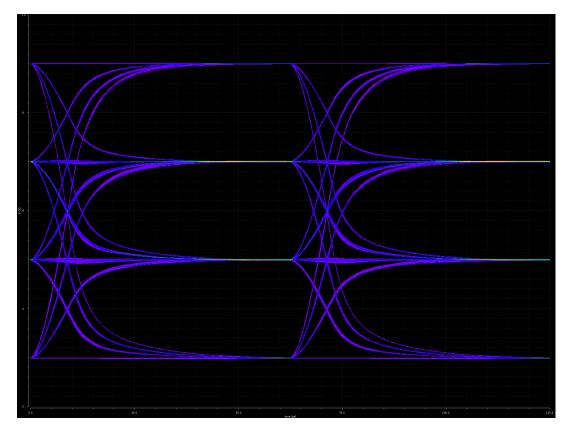

- Ensemble NRZ coding, also known as Hadamard 4-wire transform coding is a method of delivering 3 bits over an ensemble of 4 wires
- The symbol rate is 2/3rds of what is required for differential NRZ for the same throughput
- The line power is 1/3 of the three differential NRZ channels that are otherwise needed at the same rate and throughput

The 4 wires in the ensemble must have low intra-ensemble skew, on the same order as differential's intra-pair skew

Ensembles are terminated jointly to an AC ground at the receiver

The transmit codewords are:

- the 4 permutations of (1, -1/3, -1/3, -1/3)
- plus
- the 4 permutations of (-1, 1/3, 1/3, 1/3)٠



Typical Ensemble NRZ Waveform

Transmit Ensemble NRZ waveform

- Viewed single-ended
- Only two levels present at any given time

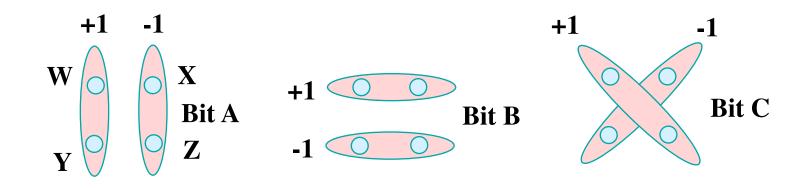
٠

٠

A differential NRZ Transmitter calculates the 2x2 Hadamard Transform

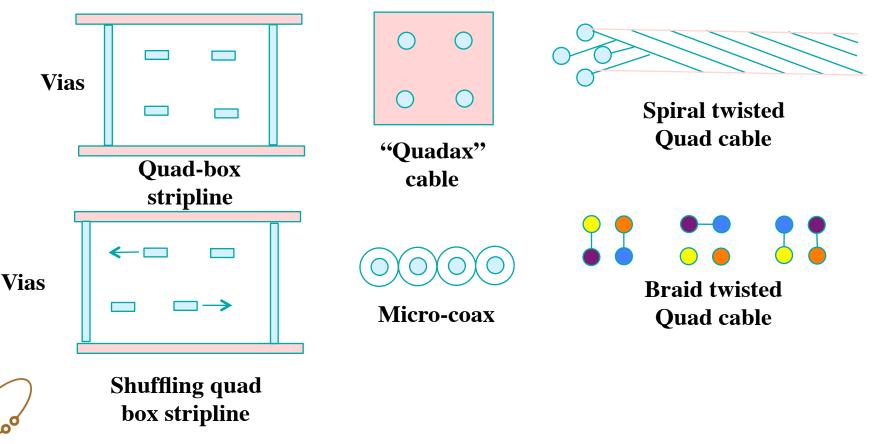
The transmit vector is obtained by multiplying the one input bits by the 2x2 Hadamard Transform

- +1 +1 (not used)
- +1 -1 Input A
- W X <= Outputs
- The result looks like the following diagram:


+1 -1 W O O X Bit A

The Ensemble NRZ Transmitter calculates the 4x4 Hadamard Transform

The transmit vector is obtained by multiplying the three input bits by the 4x4 Hadamard Transform


- +1 +1 +1 +1 (not used)
- +1 -1 +1 -1 Input A
- +1 +1 -1 -1 Input B
- +1 -1 -1 +1 Input C
- W X Y Z <= Outputs
- The computation can be done either digitally (preferred) or in analog.
- The transform is 100% linear (linear implementations can carry analog video)
- The result looks like the following diagrams:

Good Channels for Ensemble NRZ

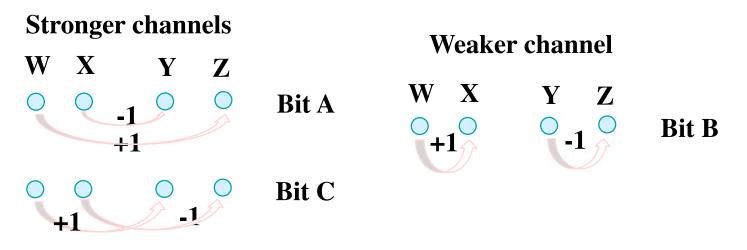
Good channels for Ensemble NRZ have four balanced and moderately spaced channels in a 3D structure

- Quad-box Stripline, "Quadax" Cable, Twisted Quad Cable, micro-coax
- Alternating structures get closer to full balance for wires across the ensemble

٠

The Ensemble NRZ Receiver

- The receiver consists of three analog multi-input comparators that invert the 4x4 Hadamard Transform:
- Name the received values w, x, y and z
- Compare (w+x) to (y+z)
- Compare (w+y) to (x+z)
- Compare (w+z) to (x+y)
- These correspond to the rows of the Hadamard Transform


- Summed comparisons yield binary eyes

- There is no receive digital decoder the calculation is done in analog
- The receiver can also be implemented with DSPs
- An Ensemble NRZ receiver can easily be made to have a differential mode

Ensemble NRZ can also do well on pair-oriented or 2-D channels:

- A linear set of equally spaced wires
- Channels of two skew-constrained pairs as long as the wires within the pairs are not ٠ so close that there is a strong common-mode extinction
 - For each of these channels, the bit lane that is derived from the part of the Hadamard matrix with two +1's on one pair and two -1 on the other pair will be somewhat weaker than the other two and has a later sampling point
 - That weaker bit lane can be strengthened with extra gain since Ensemble NRZ has a linear response

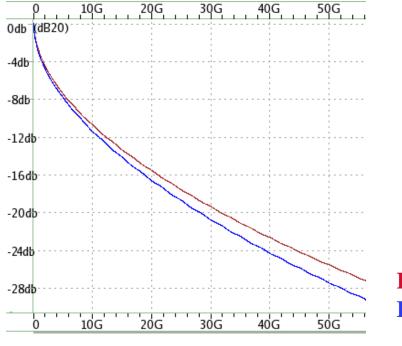
٠

•

Simulation of Ensemble NRZ

We simulated the performance of Ensemble NRZ over two differential pairs

- 25 Gb/s per wire, 3 lanes over 4 wires (34 Gbaud)
- 18 dB loss at 25 GHz (20dB at 28 GHz) channel used
 - Suitable for a module interconnect
 - Suitable for an apples to apples comparison against NRZ ٠
- **Megtron 6 material**
- A Tx FIR was not needed to make this simulation work ٠
- **Rx CTLE parameters:** ٠
 - Poles at 1.6, 8, 32, 48 and 48 GHz
 - Zeros at 1, 5.2 & 16 GHz
 - DC gain = 1
 - Channel has two loosely coupled microstrip differential pairs


٠

٠

Channel for Simulation of Ensemble NRZ

Megtron 6 Channel used

- VSR channel suitable for module interconnect
- Backplane channels are likely possible

Loss on the two stronger channels Loss on the weaker channel

Simulation of Ensemble NRZ

Receive Ensemble NRZ Rx Eyes

- 25 Gb/s per wire, 3 lanes over 4 wires (34 Gbaud)
- Simulation includes only the intra-ensemble ISI and crosstalk effects
 - Other impairments should be added

100 100 Q -2 -4 50 50 -6 -8 mvolts muolts Û 0 -10-12 -50 -50 -14 -16 -100 -18 -100 15 20 -20 -15 -10 -5 5 10 15 20 -15 -5 5 10 Û -20-10Û psec psec

Weaker channel – 93mv, 24ps

Stronger channels - 112mv, 25ps

٠

Ensemble NRZ Performance – **Power & EMI**

Ensemble NRZ saves power

- The line power consumption of the four wire ensemble is equivalent to one differential NRZ channel
- The line power consumption is 33% that of the three differential NRZ channels needed to achieve the same throughput (with the same levels and symbol rate)
- The line power consumption is 75% of two differential PAM-3 channels with the same levels and symbol rate

The EMI performance is slightly better than NRZ

- The emitted fields are well balanced from the four wires.
- The much lower launch energy reduces the radiated energy enough to offset the ٠ somewhat lower coupling of the wires

٠

Ensemble NRZ performance -SNR & ISI

The Ensemble NRZ SNR tolerance is 6dBs worse than NRZ

Similar to that of PAM-3

Ensemble NRZ resembles NRZ in its tolerance of inter-symbol interference (ISI)

- The pulse response of the binary output of the three multi-input comparators is the same the pulse response as an NRZ receiver
- For channels with linear equalization, the sensitivity to residual ISI as compared to NRZ is the ISI-Ratio
 - ISI-Ratio(NRZ) = 1
 - ISI-Ratio(Ensemble NRZ) = 1 (the same)
 - ISI-Ratio(PAM-3) = 2
 - ISI-Ratio(PAM-4) = 3

٠

Ensemble NRZ Compatibility

400GE is a large enough change from 100GE that most channels will have a new design anyway

- It is not a particular limitation to constrain the skew of the wires
 - It is a matter of making the choice to do so
- It is not a particular limitation to use 3D orientations
- Good operation over pairs should allow the use of pair-oriented connectors

Ensemble NRZ implementations can be made backwards compatible to differential

- The comparators used for Ensemble NRZ are similar to those used for differential
- As we shall see, Ensemble NRZ interfaces can use classic binary DFEs

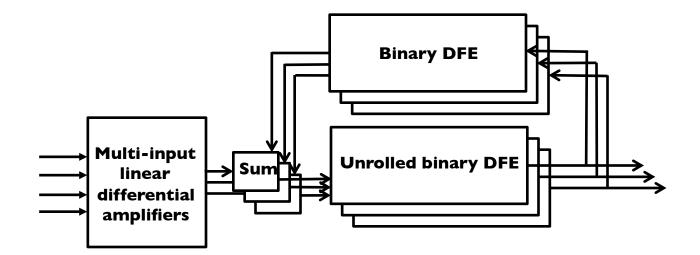
٠

٠

٠

٠

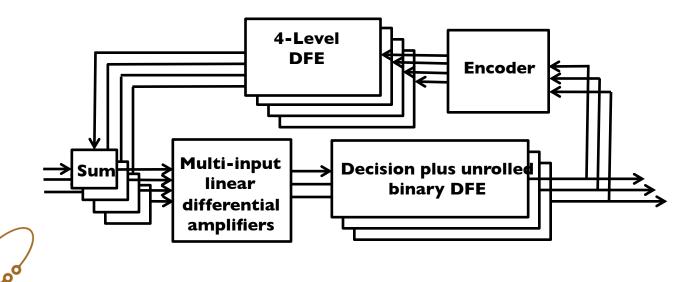
Decision Feedback Equalizers (DFEs) are a key technology for high speed links


- They use the output of the final decision to equalize for the channel
- They are a closed-loop equalization technology
- They are highly accurate because they use a regenerated signal at the receiver
- They also can cancel reflections that occur much later because of the easy digital storage of the decisions
- Many high speed specifications effectively require them
- Implementations of non-NRZ DFEs are difficult
 - The highest speed portions of DFEs are often "unrolled"
 - The complexity of unrolled DFEs increases exponentially with non NRZ eyes

Preferred Ensemble NRZ DFE architecture

This preferred form of DFE is compatible with Ensemble NRZ coding

- 3 unrolled binary DFEs for the first 1-3 clocks
- 3 regular binary DFEs for the rest
- This architecture relies on the difference in the reflections being reasonably constrained between the wires
- These are classic high-speed DFEs unchanged



Alternative Ensemble NRZ DFE architecture

An alternative DFE architecture is compatible with Ensemble NRZ coding and can handle unbalanced reflections at the cost of considerable complexity and power

- This is not the preferred architecture
- Because this is so much harder, it is worth specifying the reflection imbalance
- Compromise binary DFE on the high-speed unrolled portion
 - Relies on the reflections that are near the receiver being somewhat balanced between the wires
- Re-encoded ensemble 4-level DFE for the non-unrolled portion
 - Allows for arbitrary reflections outside of the unrolled interval

Ensemble NRZ encoding allows 400GE to achieve technical feasibility for the possible objective of 16-wire backplane and module interface links

- Ensemble NRZ reduces the excessive link rate needed by NRZ links, allowing their construction with existing and well-understood implementation techniques
- Ensemble NRZ employs a relatively simple circuit
- Ensemble NRZ relies on a low-skew four wire ensemble
- Ensemble NRZ's linear nature allows implementation flexibility
- The use of Ensemble NRZ saves power over NRZ

Ensemble NRZ supports channels with frequency impairments similar to what NRZ requires

Ensemble NRZ is much more like NRZ than PAM solutions are

Ensemble NRZ allows binary DFEs to be used

Ensemble NRZ can use ordinary binary DFE circuits if the differences in the reflections are constrained

٠

٠