Considerations on Optical 400GbE DMT

IEEE802.3 York Interim, September, 2013

Toshiki Tanaka, Tomoo Takahara, Masato Nishihara, Jens C. Rasmussen Fujitsu Laboratories Ltd.

Supporters

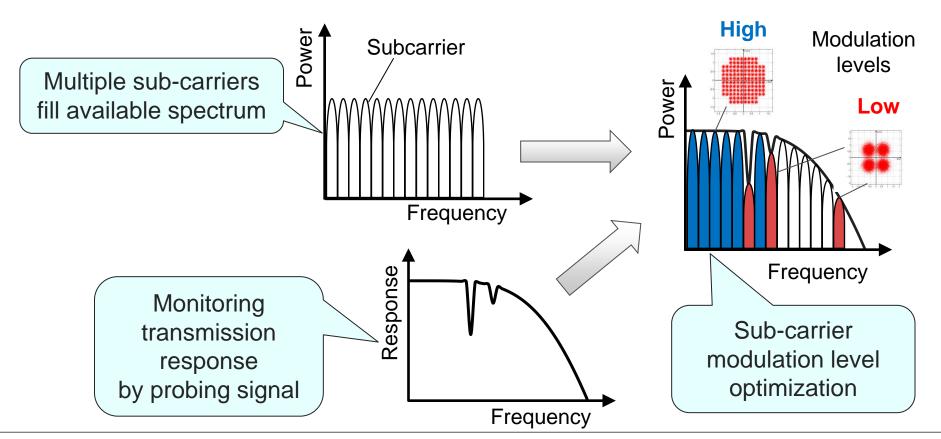
Hideki Isono
Fujitsu Optical Components

Daniel Stevens Fujitsu Semiconductor Europe

Matt Pope Semtech

Craig Hornbuckle Semtech

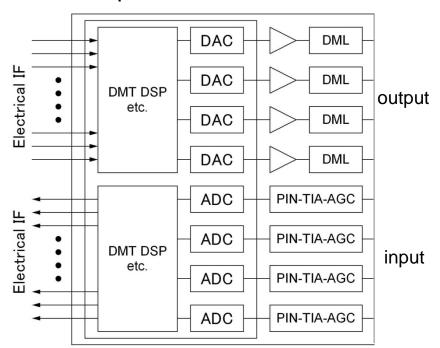
Song Shang
Semtech


Francois Tremblay Semtech

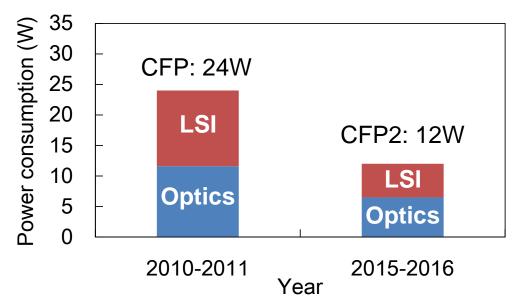
Background

- Several contributions in the last meeting mentioned that the long reach applications such as 10km and 40km is strongly preferred for first target of 400GbE.
- In this presentation, we discuss the advanced modulation for its solution.
 - Transceiver configuration for optical 400GbE DMT
 - Transceiver target considering CMOS process technology roadmap
 - The CMOS technology will be an important factor for power consumption in the advanced modulation.

Discrete Multi-tone (DMT) Technology


- Widely used in xDSL systems (ADSL, HDSL....)
 - High spectral efficiency and cost effectiveness
- Adaptive bit and power allocation for each subcarrier depending on transmission characteristics
 - Optimization from SNRs of the transmitted probing signal

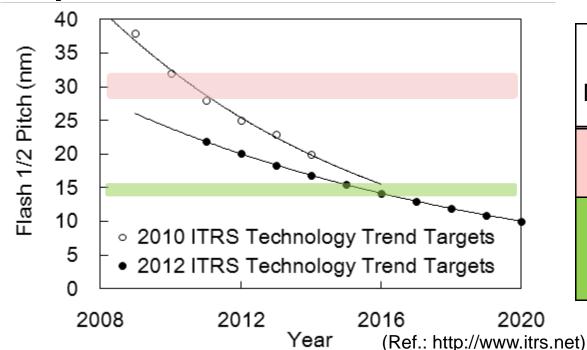
Configuration for Optical 400GbE DMT


- DMT can achieve 400GbE transceiver with only 4 channel as below because DMT can use any optical devices for 100GbE transceiver.
 - Reduction of size and cost because of reduction the number of optical devices
- Serial optical link by using DMT with WDM is the good candidate considering the long reach applications such as 10km and 40km preferred as the first target for 400GbE.
- Serial optical link (WDM)
- **DML** DAC Electrical IF **DML** DAC DMT DSP Output etc. DAC **DML** DAC **DML ADC** PIN-TIA-AGC Electrical IF ADC PIN-TIA-AGC DEMUX DMT DSP Input etc. ADC PIN-TIA-AGC PIN-TIA-AGC ADC

Parallel optical link

Target Transceiver for Optical 400GbE DMT

- CFP and CFP2 transceiver will be preferred for target transceiver for the long reach application.
- We estimate the availability of optical 400GbE DMT transceiver from the point of view of power consumption.
- Target power consumption



- Reduction of power consumption
 - LSI: Progress of CMOS process technology
- Optics: Differential driving and reduction of driving voltage and bias current due to the characteristic enhancement of DAC and ADC

Target for Optical 400GbE Transceiver Roadmap

- The progress of CMOS technology is accelerated.
- We show available time of CFP and CFP2 for Optical 400GbE DMT transceiver from the point of view of CMOS process technology.
- Overview of CMOS International Technology Roadmap for Semiconductors(ITRS)

Target Module	LSI process	
	Technology	Available
		time
CFP	32nm-	2010-
	28nm	2011
CFP2	16nm-	2015-
	14nm	2016
	(+2gen.)	

Summary

- Transceiver configuration is shown for optical 400GbE DMT with WDM
 - Reduction of size and cost because of reduction the number of optical devices
- Progress of CMOS technology leads to reduction of power consumption and cost for 400GbE transceiver.
 - Roadmap towards the transceiver of CFP and CFP2

Thank you