

Resistive Imbalance Specification Issues and Limitations

Ken Bennett – Sifos Technologies, Inc.
Resistive Imbalance Ad Hoc
June 10, 2014

PI Imbalance Specification Problem

- The contribution of each is dependent upon the overall resistance
 - PSE PI Runbalance contribution is not the same as PSE PI Runbalance

$$\frac{R_{pseRmax} - R_{pseRmin}}{\sum (R_{max} + R_{min})} \neq \frac{R_{pseRmax} - R_{pseRmin}}{R_{pseRmax} + R_{pseRmin}}$$

PD PI Runbalance contribution is not the same as PD PI Runbalance

$$\frac{R_{pdRmax} - R_{pdRmin}}{\sum (R_{max} + R_{min})} \neq \frac{R_{pdRmax} - R_{pdRmin}}{R_{pdRmax} + R_{pdRmin}}$$

- Changes in total resistance can change derived Runbalance requirements for either or both PIs
 - An Runbalance spec at the PSE PI and PD PI will not directly correlate with current imbalance

For Derived contributions, see Annex

PSE Runbalance Calculation, Simulation

- Simulation Conditions common to each:
 - ~1M Cable, worst case model used to arrive at ~26%
 - PD with Diode Bridge
 - PD, Channel fixed, PSE varied

	PSE Runbal		Channel		PD Runbal				
Rpse other	0.001	0.001							
Rtrans	0.06	0.065							
Rconn	0.015	0.03	0.015	0.03					
Wire			0.0275	0.0285					
Rconn			0.015	0.03	0.015	0.03			
Rtrans					0.06	0.065			
Rdiode					0.8557	1.537			
Unbalance	0.1163	12%	0.2123	21%	0.2737	27%			
System Runbalance									
	0.26115	26.1%							
Simulation lunbalance Result									
(mA)	658.35	385.65	0.261207	26.1%					

	PSE Runbal		Channel		PD Runbal					
Rpse other	0.23	0.392								
Rtrans	0.06	0.065								
Rconn	0.015	0.03	0.015	0.03						
Wire			0.0275	0.0285						
Rconn			0.015	0.03	0.015	0.03				
Rtrans					0.06	0.065				
Rdiode					0.8557	1.537				
Unbalance	0.2298	23%	0.2123	21%	0.2737	27%				
System Runbalance /										
	0.26118	26.1%								
Simulation lunbalance Result										
(mA)	658.35	385.65	0.261207	26.1%						

PSE Runbalance can vary significantly for a fixed total Runbalance

PD Simulation of Diode vs FET bridge

- Simulation Conditions common to each:
 - PSE, Channel (~1M Cable), from worst case models, held constant
 - System Imbalance = 26.12%
- Diode Case:
 - 26.12% lunbalance in simulation
 - Vdiode/Idiode + Rtransf + Rconn $\rightarrow \frac{R_{pdRmax} R_{pdRmin}}{R_{pdRmax} + R_{pdRmin}}$
 - Result: 27.45% PD PI Runbalance
- FET Case:
 - Simulations used to arrive at 26.12% lunbalance
 - FET resistances: .04 min and 1.45 max Ohms
 - Rds + Rtransf + Rconn $\rightarrow \frac{R_{pdRmax} R_{pdRmin}}{R_{pdRmax} + R_{pdRmin}}$
 - Result: 34.18% PD PI Runbalance

Voltage Unbalance and Diode Models

- → Three Diode Models Simulated
- 1: Spice Model of Schottky STPS2H100
- 3: Ad Hoc Model Vdiode = 0.46 + 0.25 (id)
- 2: Diode Effective Resistance, determined by V/I at balanced Voltage Condition
- Conditions for simulations:
 - Voltage Offset Varied in one pair, +/-0.4V relative to the other pair
 - Worst Case Cable, Connector, Transformer Unbalance
 - Short (1M), Long (~80M) Cables, 5% unbalanced
 - Diodes <u>Matched</u> (same model in each pair)
 - 50V Source, 50W Load

Pair currents versus PSE V_offset, matched bridge diodes. (Worst case conns, SHORT cable, transformers)

Long Cable was ~.63A max (See Annex)

Summary

- Worst Case Runbalance of each PI is not equal to its contribution to End-to-End Pair Runbalance
 - PI Rmax + Rmin changes P2PRunbal, but a PI Runbalance specification doesn't account for this
 - As a result, an Runbalance requirement may be too restrictive
- For short cables and minor Voltage Unbalances, Current imbalance can be worse than indicated by Ad Hoc models
 - And significantly worse than indicated by effective resistance, as may be determined in a test for compliance

Annex A – Additional Referenced Content

PI Contribution

Graph of PSE PI Runbalance vs PSE PI Rmax+Rmin

Long Cable Pair Current simulation

Example Simulation circuit

End-to-End P2PRUNB

 The following is a Resistive imbalance equation for determining current imbalance between pairs (Single source, single PD)

$$\frac{\sum R_{max} - \sum R_{min}}{\sum (R_{max} + R_{min})}$$

This can be separated into contributions of the PSE, PD and Channel:

$$\frac{R_{pseRmax} - R_{pseRmin}}{\sum (R_{max} + R_{min})} + \frac{R_{CableRmax} - R_{CableRmin}}{\sum (R_{max} + R_{min})} + \frac{R_{pdRmax} - R_{pdRmin}}{\sum (R_{max} + R_{min})}$$

PSE Runbalance Requirement VS PSE total resistance (Channel, PD, and System Runbalance unchanged)

PSE_Runbalance vs PSE_Rtotal

Pair currents versus PSE V_offset, matched bridge diodes. (Worst case conns, LONG cable, transformers)

Simulated Circuit Example

