

Investigation of a low resistance connector

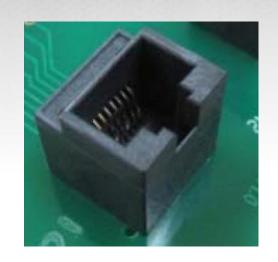


# IEC 60603-7 - Summary of specifications

- Input to output d.c. resistance:  $200m\Omega$  maximum
- Initial contact resistance:  $20m\Omega$  maximum
- Input to output d.c. resistance unbalance:  $50m\Omega$  maximum
- > Environmental or mechanical "aging": Contact resistance 20mΩ maximum change from initial

## IEC 60603-7

For the worst case model of the Ad-hoc, (minimum resistance, maximum unbalance) the maximum values according 60603-7 (200 $m\Omega$  / 50 $m\Omega$ ) are probably too high/not relevant.


But also a low resistance connector is affected by aging (environmental stress, mechanical operation,..) which would increase the initial resistance unbalance over lifetime.

To increase the database for the Ad-hoc model, this document lists the resistance test data of a specific low resistance connector.

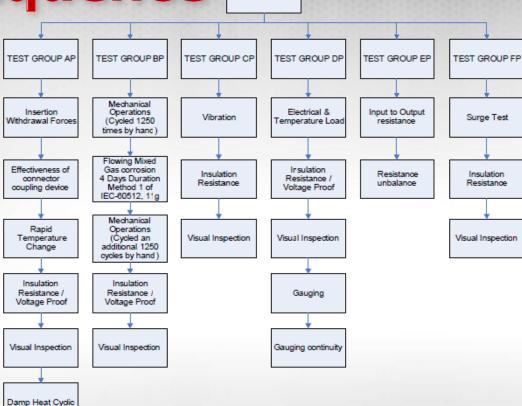


### Connector

- > Product:
  Short Top Entry
  RJ-45 connector with low
  input to output resistance.
- > Testing and test references according IEC 60603-7
- > Total quantity: 52 Samples:






# **Test Sequence**

Insertion Withdrawal forces

Effectiveness of connector coupling device

Visual Inspection

Voltage Proof



STR-1429



#### Results:

- **EP7** Input to output resistance: 23.34/20.19/19.14 (m $\Omega$  Max/Mean/Min)
- **EP8 Resistance unbalance (inital):** 4.2 m $\Omega$  maximum
- P3 Initial Contact Resistance: 11.1 / 7.9 / 6.9 (mΩ Max/Mean/Min)
- AP9 Thermal Stress / Damp heat
  Resistance change from initial:
  3.1 / 1.3 / -0.9 (mΩ Max/Mean/Min)



#### Results:

- BP6 (FMG/Corrosion, mechanical operation)
   Resistance change from initial:
   3.1 / 1.3 / -0.9 (mΩ Max/Mean/Min)
- CP2 (Vibration)
  Resistance change from initial:
  0.3 / -0.4 / -1.3 (mΩ Max/Mean/Min)
- DP5 (Electrical load and temperature)
   Resistance change from initial:
   3.1 / 0.0 / -3.4 (mΩ Max/Mean/Min)



## Summary

- ) Based on these test results the worst case would be:
  - Minimum initial resistance:  $19.14 \text{ m}\Omega$
  - Maximum initial resistance (23.34 m $\Omega$ )
    - + maximum change after aging (3.1 m $\Omega$ \*)
    - $= 26.44 \text{ m}\Omega$
    - $(7.3m\Omega)$  worst case resistance difference)
  - (\*) It has to be considered that the investigated jack has NiPd plating which offers a high contact reliability.

    A similar jack with a low quality plating could show a higher change of the contact resistance after aging.

