PD minimum power vs. channel current unbalance

Christian Beia – STMicroelectronics

Yair Darshan – Microsemi

IEEE802.3 4PPOE Study Group - Dallas, TX - November 2013

Introduction 2

- The purpose of this presentation is to update the current unbalance analysis with updated data, after the feedback received from the study group.
- The data used in this presentation come from:
 - the existing IEEE Std802.3-2012 standard
 - lab measurement and characterization of real case components.
- The objective is to identify the causes of current unbalance in a real system, and their impact on power delivered to the PD and potential effect on other channel components.
- In order to provide a baseline for future improvements a worst-case approach was used.
- Finally, a sensitivity analysis has been performed to identify the main sources of current unbalance and the key for improvements.

Assumptions

• This presentation uses the specification of a 2-pairs Type 2 system

- Vport_PSE min = 50V as per Table 33-11
- Icable = 0.6A (per 2P for all pairs) as per Table 33-1
- Maximum (channel connectors) cable loop resistance – 12.5Ω-0.8Ω=11.7Ω.
- The 4-pair PD was modeled as a constant power load that draws current from the Alt-A and Alt-B through a diode bridge. The PSE was modeled as a single voltage source with two outputs with their output resistance each.

Notes:

1. 0.2 ohms is the worst case contact resistance per connector standard. So $4x0.2=0.8\Omega \rightarrow 12.5$ -0.8=11.7 resulting with maximum cable loop resistance only

Worst case numbers set

 Two scenarios have been identified: max wire resistivity (CAT5E cables) and min wire resistivity (CAT6/A cables)

Table 1	Max Cable resistivity	Min Cable resistivity			
Cable resistivity	117mOhm/m *	66mOhm/m*			
Transformer winding resistance	120mOhm min, 130mOhm max	120mOhm min, 130mOhm max			
Contact resistance	30mOhm min, ** 60mOhm max	30mOhm min, ** 60mOhm max			
Diode bridge	0.3V+0.4Ohm*ld min; 0.4V+0.5Ohm*id max	0.3V+0.4Ohm*ld min; 0.4V+0.5Ohm*id max			
PSE output resistance (e.g. Rs_a/b=Rsense+Rdson)	0.25+0.1 Ohm min 0.25+0.2 Ohm max	0.1+0.05 Ohm min 0.1+0.1 Ohm max			

- *Cable pair to pair resistance max unbalance is set to 5%. See darshan_1_1113.pdf. Cable resistance within pair unbalance is max 2%. **Connector contact aging will be addressed in other work.
- All parameters are at room temperature and further study is required to address temperature variations

Defining a worst case for current unbalance

•The worst case for current unbalance happens when Alt-A loop resistance is minimum and Alt-B is maximum (or vice versa) 5

•The maximum current flows in the pair with minimum resistance.

•The max power delivery is reached when the current in the PSE sense resistor reaches 0.6A.

Min resistivity model results

Table 2	Min. resistivity model		del	
Cable length	1 <i>m</i>	10m	100m	
VportPSE AltA/B	PSE Voltage was measured at the outer legs of the transformers 50V±20mV			
I AltA Plus	612mA	604mA	598mA	
I AltA Minus	600mA	600mA	600mA	
I AltB Plus	349mA	399mA	502mA	
I AltB Minus	361mA	403mA	500mA	
Max P2P current unbalance	263mA	205mA	100mA	
VportPD AltA	49.90V	49.58V	46.36V	
VportPD AltB	49.94V	49.68V	46.58V	
P 4P PD at ALTA + ALTB*	47.96W	49.77W	51.12W	

- The worst case for system using Cat-6/A cables is the minimum cable length (1m, but less is worse)
- The presence of the sense resistor on return paths, results in a current balancing effect on lower legs.
- The positive current on Alt-A may exceed the 0.6A limit, since we are not monitoring it in this model.
- The presence of a sense resistor on upper legs would have a current balancing effect with no effect on power delivery.
- Simulation showed that unbalance within a pair has negligible effect on P2P unbalance.

*If we limit current on ALT A for 0.6A too, minimum available PD power will be lower.

Max resistivity model results 7

Table 3	Max PSE port unbalance			
Cable length	1 <i>m</i>	10m	100m	
VportPSE AltA	PSE Voltage was measured at the outer legs of the transformers 50V±20mV			
I AltA Plus	632mA	610mA	598mA	
I AltA Minus	600mA	600mA	600mA	
I AltB Plus	371mA	432mA	518mA	
I AltB Minus	403mA	442mA	516mA	
Max P2P current unbalance	261mA	178mA	84mA	
VportPD AltA	49.87V	49.30V	43.60V	
VportPD AltB	49.94V	49.44V	43.83V	
P 4P PD ²	50.02W	51.41W	48.77W	

- 100m is the worst case for system using CAT5e
- Again, the positive current on Alt-A is exceeding 0.6A limit since it is not monitored.
- The presence of PSE RSense is not affecting the power delivered to the PD for two reasons:
 - PSE output voltage is specified at the PSE PI so the PSE voltage (before RS) must be adjusted accordingly
 - PSE RS has a current balancing effect on the monitored paths when used for each power path.
 - The P2P current balancing effect happens whenever a resistance is added to the pair, as described by P2PRunb / Runb equation¹
 - To verify this hypothesis, some simulations with different Rs have been performed.
- 1. see http://www.ieee802.org/3/4PPOE/public/jul13/darshan_2_0713.pdf

2. If we limit current on ALT A for 0.6A too, minimum available PD power will be lower.

Sensitivity analysis component unbalance vs. power delivery

 Using the described scenarios, a sensitivity analysis was performed, to identify the main contributors of decrease of power delivery. Starting from a fully-balanced typical system Pmax was measured, then each contributor at a time was set to min/max and Pmin was measured.

• $P_{\%} = \frac{Pmax-Pmin}{Pmax+Pmin} \cdot 100.$

•The diodes are the most influencing factors of <u>power delivery in short cable</u>, especially for low resistivity cables.

•(See proposed next action item for P2PRunb/lunb sensitivity analysis)

Table 4

Max res scenario	Component UNB[±]	Effect on power delivery [-]		Min res scenario	Component UNB[±]	Effect on power delivery [-]			
Cable					Cable				
lenght		1m	10m	100m	lenght		1m	10m	100m
Rt	4%	0.17%	0.10%	0.01%	Rt	4%	0.18%	0.12%	0.03%
Rconn	33.30%	1 02%	0.58%	0.08%	Rconn	33.30%	1.06%	0.73%	0.16%
r cable	5%	0.20%	1 1.3%	1 68%	r_cable	5%	0.12%	0.81%	1.79%
Pdiode	11 10%	3 43%	1.96%	0.32%	Rdiode	11.10%	3.56%	2.48%	0.57%
Vdiode	14.30%	5.72%	3.27%	0.53%	Vdiode	14.30%	5.94%	4.14%	0.96%

Summary I

- P2P current unbalance increases when cable length decreases.
- P2P current unbalance increases when cable resistivity decreases i.e. CAT6A will have higher current unbalance compared to CAT5e.
- The P2P current balancing effect happens whenever a resistance is added to the pair.
- unbalance within a pair (the famous 2% pair and 3% channel) has negligible effect on P2P unbalance.
- The diodes are the most influencing factors of power delivery in short cable, especially for low resistivity cables.
- For a worst-case analysis, where PSE is limiting the current for 600mA (based on Type 2 PSE spec.) we can't meet the minimum PD objective of 49W. There are two worst cases; at 1m CAT6A and 100m CAT5e.
 - The above will be addressed in future work.

Proposed Next Action Items 10

- We need to define the requirements for P2PRunb and/or P2P current unbalance for the PD, Channel and PSE in order to meet our objectives.
- To analyzed the following scenarios:
 - How connector contact aging will affect the results i.e. if min/max contact resistance difference will be increased.
 - The current unbalance results as function of operating temperature range
 - To analyze the results when there is no hard limit of 600mA on the negative pair.
 - To set a worst case conditions for evaluating maximum current unbalance through transformers.
 - Consider analyzing P2P current unbalance higher category cables than CAT6A
 - To perform sensitivity analysis for P2P current and resistance unbalance.

Thank You