Objectives IEEE 802.3 Beyond 400 Gb/s Ethernet Study Group

John D'Ambrosia, Chair, IEEE 802.3 Beyond 400 Gb/s Ethernet Study Group Futurewei, U.S. Subsidiary of Huawei

August 26, 2021

• Non-Rate Specific

- Support full-duplex operation only *
- Preserve the Ethernet frame format utilizing the Ethernet MAC *
- Preserve minimum and maximum FrameSize of current IEEE 802.3 standard *
- Support a BER of better than or equal to 10 -13 at the MAC/PLS service interface (or the frame loss ratio equivalent) **
- Provide support to enable mapping over OTN ***

• 200 Gb/s Related

- Support a MAC data rate of 200 Gb/s ##
- Support optional single-lane 200 Gb/s attachment unit interfaces for chip-to-module and chip-to-chip applications ^{##}
- Define a physical layer specification that supports 200 Gb/s operation:
 - over 1 pair of copper twin-axial cables in each direction with a reach of up to at least 1.0 meter ^
 - over 1 pair of SMF with lengths up to at least 500 m ##
 - over 1 pair of SMF with lengths up to at least 2 km ##

• 400 Gb/s Related

- Support a MAC data rate of 400 Gb/s ##
- Support optional two-lane 400 Gb/s attachment unit interfaces for chip-to-module and chip-to-chip applications ^{##}
- Define a physical layer specification that supports 400 Gb/s operation:
 - over 2 pairs of copper twin-axial cables in each direction with a reach of up to at least 1.0 meter ^
 - over 2 pairs of SMF with lengths up to at least 500 m ##

B400G Adopted Objectives

• 800 Gb/s Related

- Support a MAC data rate of 800 Gb/s *
- Support optional eight-lane 800 Gb/s attachment unit interfaces for chip-to-module and chip-to-chip applications ****
- Support optional four-lane 800 Gb/s attachment unit interfaces for chip-to-module and chip-to-chip applications ****
- Define a physical layer specification that supports 800 Gb/s operation:
 - over 4 pairs of copper twin-axial cables in each direction with a reach of up to at least 1.0 meter ^
 - over eight lanes of twin axial copper cables with a reach up to at least 2 meters @
 - over eight lanes over electrical backplanes supporting an insertion loss \leq 28dB at 26.56GHz @
 - over 8 pairs of MMF with lengths up to at least 50 m *
 - over 8 pairs of MMF with lengths up to at least 100 m *
 - over 8 pairs of SMF with lengths up to at least 500 m *
 - over 8 pairs of SMF with lengths up to at least 2 km #
 - over 4 pairs of SMF with lengths up to at least 500 m *
 - over 4 pairs of SMF with lengths up to at least 2 km \ast
 - over 4 wavelengths over a single SMF in each direction with lengths up to at least 2 km st
 - over a single SMF in each direction with lengths up to at least 10 km *
 - over a single SMF in each direction with lengths up to at least 40 km *

B400G Adopted Objectives

• 1.6 Tb/s Related

- Support a MAC data rate of 1.6 Tb/s #
- Support optional sixteen-lane 1.6 Tb/s attachment unit interfaces for chip-to-module and chip-to-chip applications ###
- Support optional eight-lane 1.6 Tb/s attachment unit interfaces for chip-to-module and chip-to-chip applications #
- Define a physical layer specification that supports 1.6 Tb/s operation:
 - over 8 pairs of copper twin-axial cables in each direction with a reach of up to at least 1.0 meter ^
 - over 8 pairs of SMF with lengths up to at least 500 m #
 - over 8 pairs of SMF with lengths up to at least 2 km #

Adoption History

*	Adopted by B400G SG, Apr 2021
**	Adopted by B400G SG Apr 26, 2021
***	Adopted by B400G SG May 3, 2021
****	Adopted by B400G SG May 17, 2021
#	Adopted by B400G SG Jun 3, 2021
##	Adopted by B400G SG Jul 13, 2021
###	Adopted by B400G SG Jul 20, 2021
@	Adopted by B400G SG Aug 12, 2021
٨	Adopted by B400G SG Aug 26, 2021