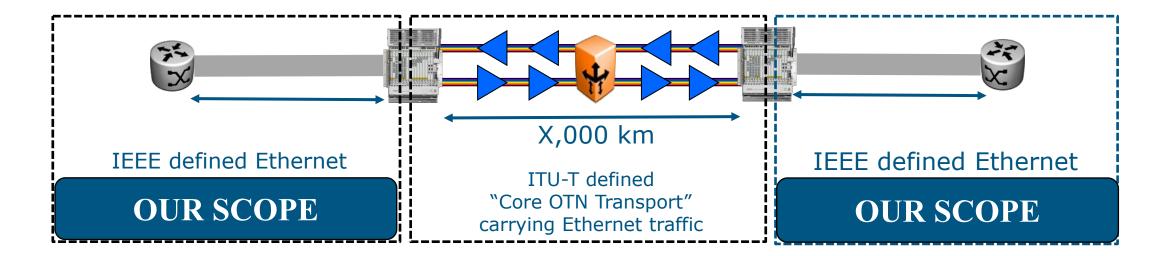
IEEE 802.3 Beyond 400 Gb/s Ethernet Study Group

Beyond 400 Gb/s Ethernet – The Road Ahead

John D'Ambrosia Acting Chair, IEEE Beyond 400 Gb/s Ethernet, Study Group 14 Jan 2021 Teleconference

Foreword

My responsibility as chair:


 to produce a draft standard, recommended practice, or guideline in a reasonable amount of time for review and approval by the WG.

Nothing in this presentation should be interpreted as an endorsement by its mention

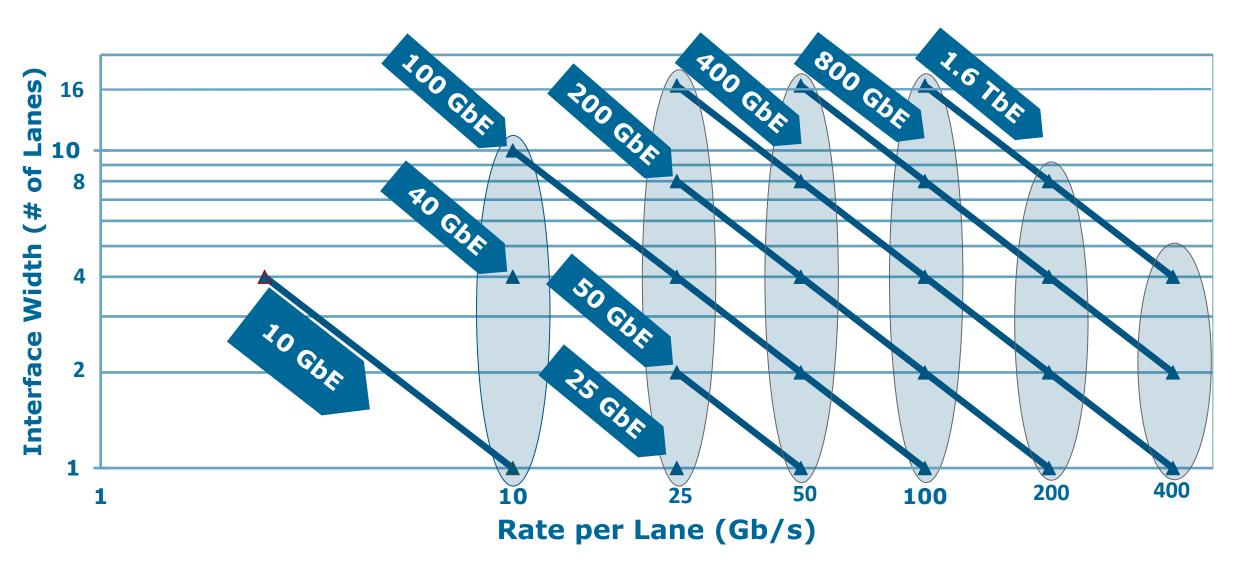
Study Group Charter

- The IEEE 802 LMSC Executive Committee has chartered a Study Group under the IEEE 802.3 Ethernet Working Group to develop a Project Authorization Request (PAR) and Criteria for Standards Development (CSD) responses for:
 - (1) Beyond 400 Gb/s Ethernet
 - (2) Physical Layer specifications for existing Ethernet rates based on Physical Layer specifications for beyond 400 Gb/s Ethernet.

THE SCOPE OF ETHERNET TODAY

#2

#1


Key Questions

- What Ethernet rate or rates does this SG want to target?
- What signaling rate technologies should we leverage? Do we need to examine on a case-bycase basis?
 - 50 Gb/s?
 - 100 Gb/s?
 - 200 Gb/s?
 - Other?


What objectives does this group wish to target?

- Can they be justified via the CSD?

The Relationship Between Ethernet & Signaling Rates

The Entire Ethernet Family Needs Consideration

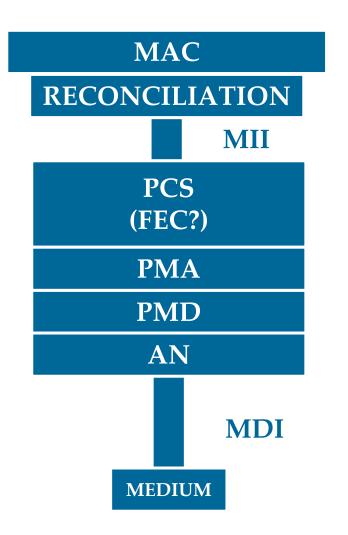
Potential for Technology Reuse

Reuse of signaling rate technologies developed for higher Ethernet rates enables existing lower speed Ethernet rate specifications (AUI, -KR, -CR, -SR, - DR, -FR, -LR, -ER)

					:==:	:==:	: ••••	:==::	:==:			:==::	:	::	DELLEMC 29332F-C	N
																10101
1472	3474 5/	76 74	<u>9▲▼10</u>	11 AV 12	13 4 7 14	15 4 7 16	17 ▲▼ 18	19▲▼20	214722	234724	254726	274728	294730	31▲▼32		*
• • • • • • • • • • • • • • • • • • • •	-	1			1					1						
				and a state of the												

Image courtesy of David Piehler, Dell Technologies

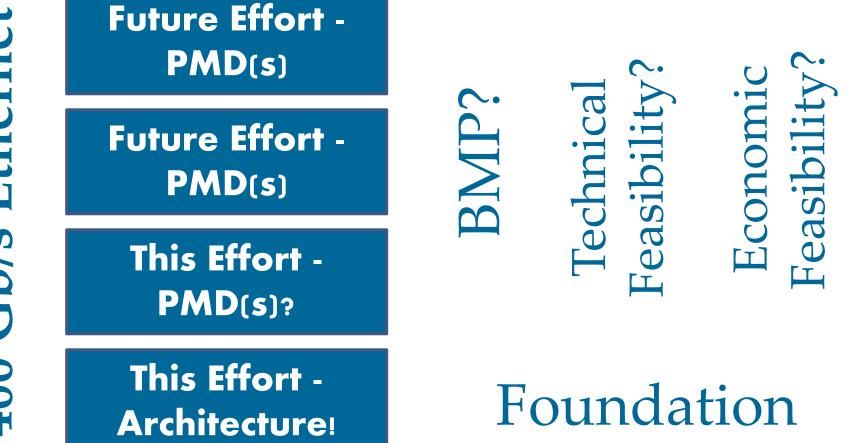
- > 32 400 Gb/s capacity ports
- Can be configured to support
 32 400 GbE ports
- Can be configured to support 128 - 100 GbE ports


Possible Scenario – 800 GbE is developed based on 4 x 200 Gb/s The 200 Gb/s signaling rate technology could be reused to support development of 200 GbE and 400 GbE physical layer specifications 800 Gb/s 800 Gb/s 800 Gb/s Port Port Port Each link based Each link based Link based on on 1 x 200 Gb/s on 2 x 200 Gb/s 4 x 200 Gb/s 1 x 800 GbE 4 x 200 GbE 2 x 400 GbE Reuse of 200 Gb/s signaling rate technology could be applicable to: AUIs, -KR, -CR, -SR, -DR, -FR, -LR, -ER, others?

"It has been my experience at Google that we have used optical and copper modules to support different configurations of a given port, including applications that require the maximum capacity of the single port."

Cedric Lam, Google

FODAY


Defining an Architecture

- Everything works together
- The architecture must be flexible and scalable
- Multiple physical layer specifications will be developed
- Extender Sublayer?
- FEC Strategy
 - End-to-end?
 - Segment-by-segment?
 - Encapsulate?
- Signaling technologies will evolve
- Medium changes?

My Perspective

eyone J Eth Ŷ of S ouse 400

Objective	.3ba	.3bj	.3bm	.3cd	.3ck	.3ct	.3cu	.3db
CAUI - 10 X 10 Gb/s	✓							
CAUI - 4 x 25 Gb/s			✓					
CAUI – 2 x 50 Gb/s				✓				
CAUI – 1 x 100 Gb/s					✓			
Backplane – 4 x 25 Gb/s		\checkmark						
Backplane – 2 x 50 Gb/s				 ✓ 				
Backplane – 1 x 100 Gb/s					✓			
TwinAx – 10 x 10 Gb/s, 7m	 ✓ 							
TwinAx – 4 x 25 Gb/s, 5m		\checkmark						
Twin-Ax – 2 x 50 Gb/s, 3m				✓				
Twin-Ax – 1 x 100 Gb/s, 2m					✓			
MMF – 10 x 10 Gb/s, 100/150m	✓							
MMF – 4 x 25 Gb/s, 100m			\checkmark					
MMF – 2 x 50 Gb/s, 100m				✓				
MMF – 1 x 100 Gb/s, 50/100m								✓
SMF – 1 x 100 Gb/s, 500m				✓				
SMF – 1 x 100 Gb/s, 2km							\checkmark	
SMF – 4 x 25 Gb/s WDM, 10km	✓							
SMF – 1 x 100 Gb/s, 6km							\checkmark	
SMF – 4 x 25 Gb/s WDM, 40km	✓							
DWDM Systems, 1 x 100 Gb/s, 80km						✓		

Observations

- Electrical Interfaces
 - Chip-to-chip
 - Chip-to-module
- PMD Types
 - Backplane
 - Twin-Ax
 - MMF (current trend up to 100m)
 - SMF parallel fiber approach (current trend up to 500m)
 - SMF -duplex fiber approach (2km to 40km)
 - DWDM Systems
- PMD Lane counts
 - Backplane / Twin-ax / MMF 1, 2, 4 lane variants
 - SMF 1 and 4 lane variants
 - Development of 200 Gb/s signaling would then be applicable to 200 GbE / 400 GbE electrical interfaces and various PMDs

Summary

- We are just starting a long journey....
- This is just the first of many projects to whatever new speed(s) we select
- Development of the underlying architecture is critical

THANK YOU!

