Proposed Objectives for Parallel PMDs

Robert Lingle, Jr. (OFS), Mabud Choudhury (OFS)

Beyond 400G Study Group March 15, 2021 IEEE 802 Plenary Week

Supporters

- Ramana Murty Broadcom
- Vipul Bhatt II-VI
- James Young CommScope
- Tom Mitcheltree USConec
- Earl Parsons CommScope
- David Malicoat Senko
- Jose Castro Panduit
- Ali Ghiasi Ghiasi Quantum
- David Piehler Dell EMC

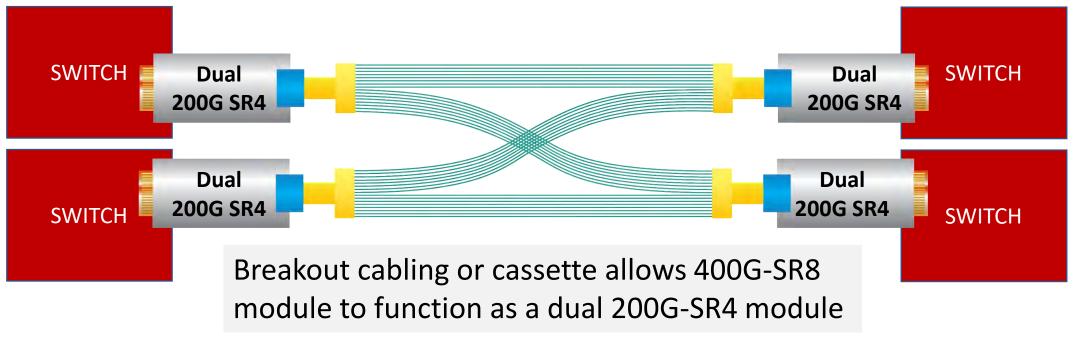
- Tom Palkert Macom
- Kent Lusted Intel

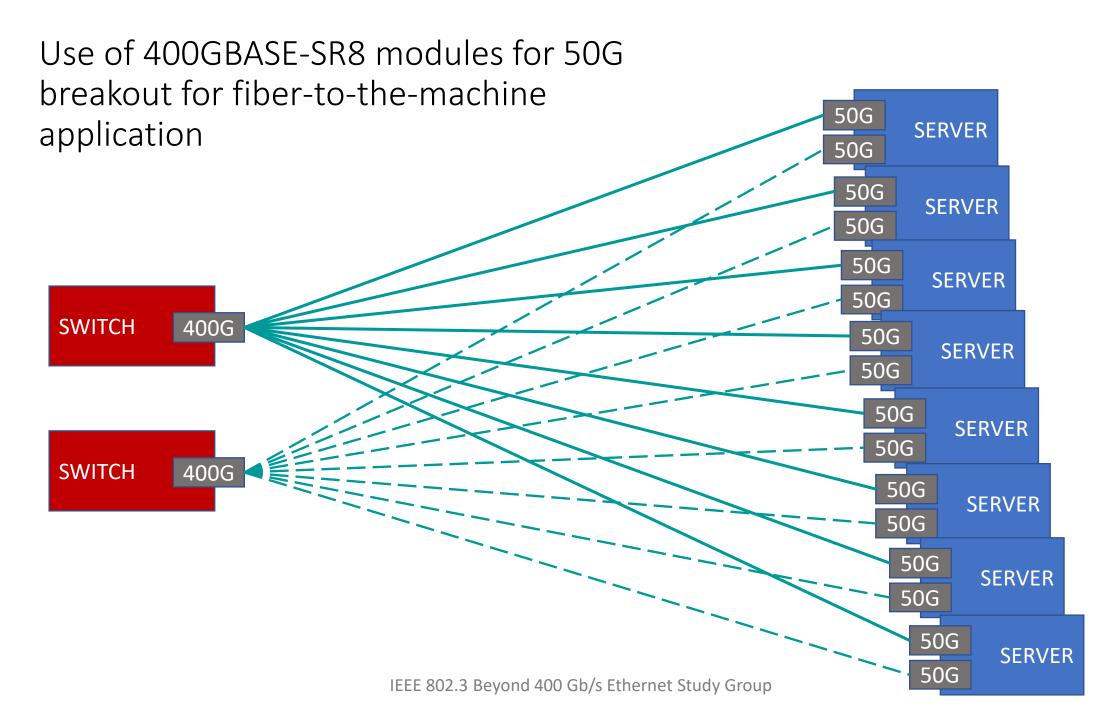
Overview

- Traditional benefits of VCSELs+MMF for lower cost & power persist
- MMF more tolerant to dust at connectors
- 100G electrical lanes may persist for a long time
- 100G VCSELs will be high volume, lower-cost parts over the next five years, including with direct drive, finding multiple short-reach applications
- They will be attractive for fiber-to-the-server/GPU with breakout cabling
- 100G VCSELs will be attractive to build 100/200/400/800 GbE parallel links
- Propose to adopt several objectives in B400G Study Group

Summary of market segments

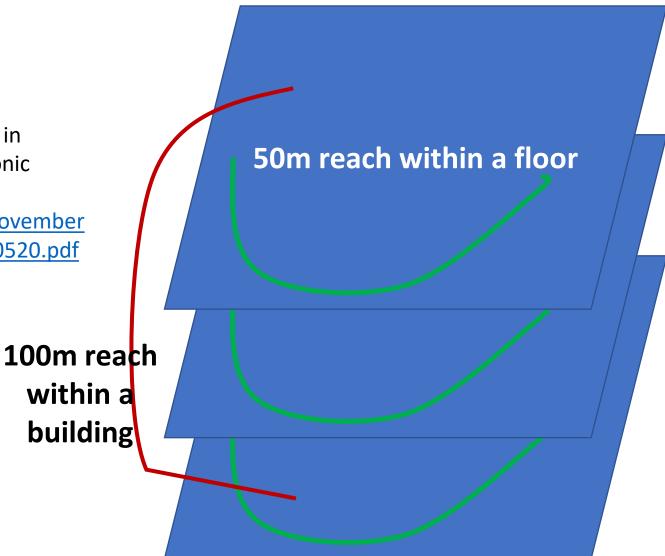
- Some hyperscale DC users in North America want parallel MMF links with 100G VCSELs over up to 50m lengths for server/GPU/memory attachment
 - With 50 & 100G lanes, server attachment is essentially a breakout application from an octal switch port: 400GBASE-SR8 & 800GBASE-SR8
 - With 50G lanes, also switch links up to 70m using 400GBASE-SR8 as dual-200G
- SR4 links with 4-pair MMF cabling widely used in China Big Cloud DCs
 - 100m reach covers up to 2/3 of switch links, per discussion in 802.3db
 - Current roadmap from 100 to 200 to 400GBASE-SR4 over 4-pair cable
 - Application of 8-pair cabling under study as roadmaps evolve
- The Large Enterprise DC market globally has a large installed base of 4-pair MMF cabling built around traditional 100m SR reach targets
 - 4:1 breakout is useful in these applications
 - Current roadmap from 40 to 100 to 200 to 400GBASE-SR4 & SR4.2
 - 400GBASE-SR4.2 deploying in 2021 in some large enterprises


Applications in the hyperscale datacenter


- 50G lanes over parallel MMF in Clause 138 & 150 (802.3cd & cm complete)
 - 50/100/200/400GBASE-SR1/2/4/8 over 100m
 - Switch links: 400GBASE-SR8 modules used for 2x200G and 1x400G
 - Server attachment: 50G links broken out from 4x50G and 8x50G ports
 - See diagrams in following slides
- 100G lane MMF standards in Clause 167 (802.3db in progress)
 - 100/200/400GBASE-VR1/2/4 over 50m, cost-optimized server attachment in North America hyperscale & short switch links in China cloud
 - 100/200/400GBASE-SR1/2/4 over 100m switch links for large enterprise & China cloud
 - Note: 100G-VR and 100G-SR will interoperate over 50m
- Propose adding 800GBASE-VR8/SR8 in B400G
 - Simple extension of VR/SR PMDs in 802.3db to 800G for low-cost switch links w/ defined MDI
 - VR8 used for 8 x 100G links from octal switch port to servers

Applications of 400GBASE-SR8 PMD in switch links

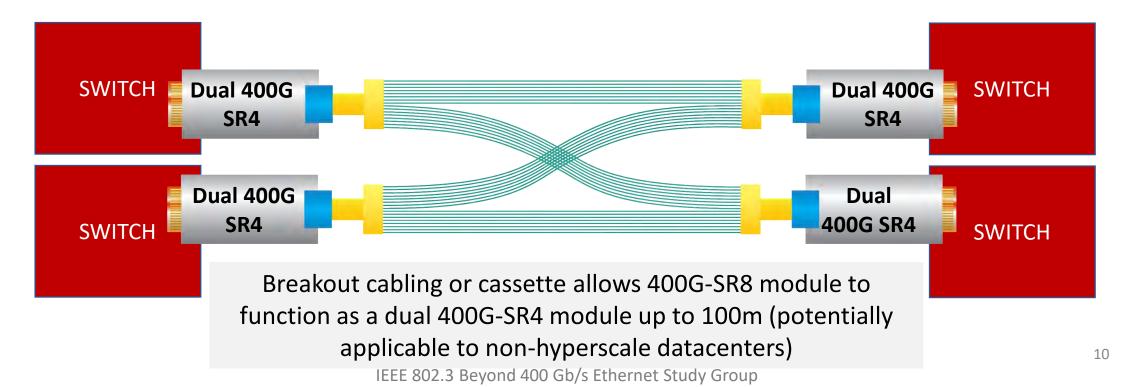
SR8 module shown in 400G point-to-point link

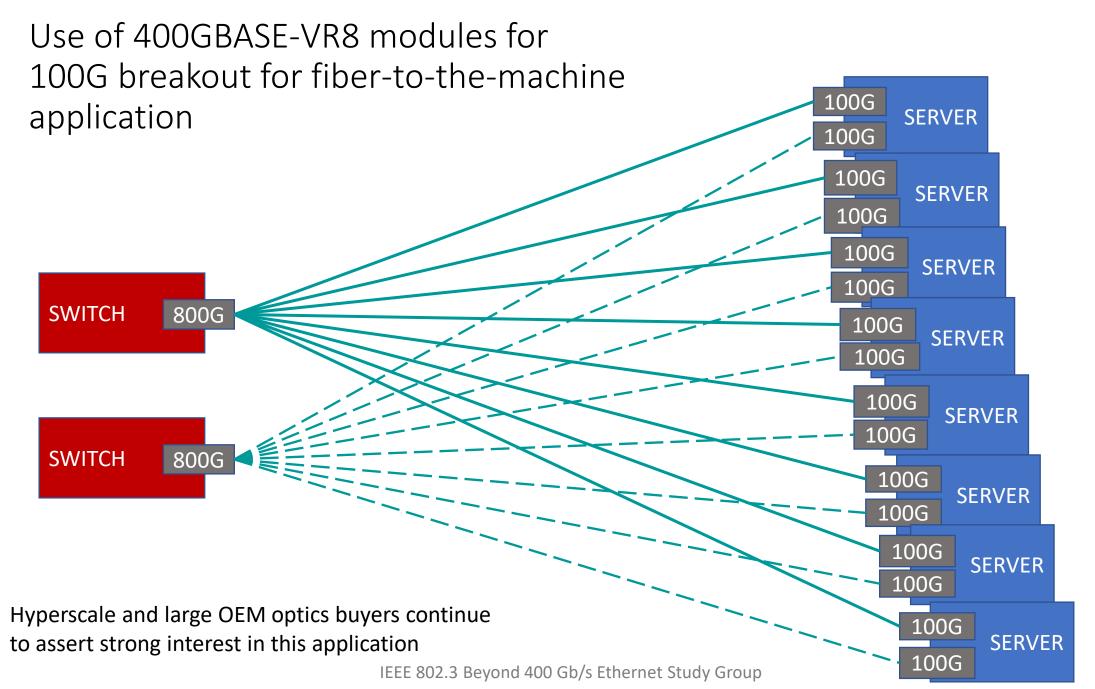


Key reach scales for MMF links in some China big cloud datacenter architectures

See, for example, the discussion of reach in minutes of November 5, 2020 TF Telephonic Interim

https://www.ieee802.org/3/db/public/November -05-2020/meeting minutes 3db 01 110520.pdf


Applications in the hyperscale datacenter


- 50G lanes over parallel MMF in Clause 138 & 150 (802.3cd & cm complete)
 - 50/100/200/400GBASE-SR1/2/4/8 over 100m
 - Switch links: 400GBASE-SR8 modules used for 2x200G and 1x400G
 - Server attachment: 50G links broken out from 4x50G and 8x50G ports
 - See diagrams in following slides
- 100G lane MMF standards in Clause 167 (802.3db in progress)
 - 100/200/400GBASE-VR1/2/4 over 50m, cost-optimized server attachment in North America hyperscale & short switch links in China cloud
 - 100/200/400GBASE-SR1/2/4 over 100m switch links for large enterprise & China cloud
 - Note: 100G-VR and 100G-SR will interoperate over 50m
- Propose adding 800GBASE-VR8/SR8 in B400G
 - Simple extension of VR/SR PMDs in 802.3db to 800G for low-cost switch links w/ defined MDI
 - VR8 used for 8 x 100G links from octal switch port to servers
 - See diagrams in following slides

Application of proposed 800GBASE-VR8/SR8 PMDs in switch links

VR8 module shown in 800G point-to-point link over 50m

In case short-reach 1.6 Tb/s links are needed ...

- It is readily conceivable to build a 1600GBASE-VR8.2 pluggable for 8-pair MMF cabling using the technology developed in IEEE P802.3cm and .3db
 - This would require 16 Tx & 16 Rx, form factor TBD less desirable
 - Use 8-pair cabling and connectors already in use
 - 850 and 910nm VCSELs
 - By comparison, a 1600GBASE-DR8.2 could use 8 Tx at 200G (optical)
- 1600GBASE-VR16 could be easily adapted for on-board or copackaged implementations if applications arose
 - 850nm VCSELs only
 - Use of thin or multi-core fibers to save space

SR4 options for installed based of 4-pair MMF cabling

- For 50G lanes, 100m over installed base 4-pair cable by 400GBASE-SR4.2
 - SR4.2 refers to use of 850 & 910nm wavelengths
 - Technology advance in many large enterprises stalled by COVID in 2020
 - Industry M&A, reorgs slowed progress; several large OEMs plan to launch 2021
- For 100G lanes, 400GBASE-SR4 under development in 802.3db
- For 100G lanes, 800GBASE-SR4.2 possible for the 4-pair MMF cable base
 - 200G electrical may require CPO at the switch, likely leading to long lifetime of 100G SerDes ASICs in large enterprise DCs. 800 GbE likely to be deployed on this platform
 - Technical feasibility can be demonstrated today for 70/100m over OM4/5
 - Further work needed to study technical feasibility for 100m over OM4
 - 200G SR1.2 may be needed as a breakout pair

Lane Rate	PMD for 4p cabling	MAC data rate
10G	40GBASE-SR4	40G
25G	100GBASE-SR4	100G
50G	200GBASE-SR4	200G
50G	400GBASE-SR4.2	400G
100G	400GBASE-SR4	400G
100G	? 800GBASE-SR4.2 ?	800G

Some connectors available for parallel PMDs

Fiber Type	# fiber pairs	Connector	IEC status – mechanical interface standards	PMD Example
MMF	4	MPO-12	Existing standard IEC 61754-7-1	SR4 / SR4.2
MMF	4	Breakout types ¹	SN/SAC: IEC 61754-36, forecast publication date: 2022-12 ² MDC: IEC 61754-37, forecast publication date: 2022-12 ²	SR4 / SR4.2
MMF	8	MPO-16	IEC 61754-7-4. Forecast publication date: 2022-02 ²	SR8 / SR4 ³
SMF	4	MPO-12	Existing standard IEC 61754-7-1	DR4
SMF	4	Breakout types ¹	SN/SAC: IEC 61754-36, forecast publication date: 2022-12 ² MDC: IEC 61754-37, forecast publication date: 2022-12 ²	DR4
SMF	8	MPO-16	IEC 61754-7-4. Forecast publication date: 2022-02 ²	Did not notice any proposals

Notes: 1) Breakout types include the "SN/SAC" and "MDC"

2) Best understanding is that actual publication date is likely to slip beyond current forecast

3) Use of MPO-16 for 4-pair MMF PMDs will be proposed in 802.3db for the MDI

8-pair MMF cable considerations

- The installed base for switch links in hyperscale & large enterprise DCs comprised 4-pair cable with MPO-12 termination
- 400GBASE-SR8 PMD type for use with 8-pair cabling was recommended in IEEE P802.3cm TF by a participant affiliated with a hyperscale DC operator
 - 8-pair fiber cords are readily available
 - MPO-16 APC connectors are shipping & in standardization in IEC, scaling up
- Believe that many 400GBASE-SR8 modules shipped to date have been deployed as dual-200G modules
 - With appropriate connectivity, can preserve trunk cables deployed for SR4
- Low impediments to deploy SR8 for fiber breakout to servers/GPUs

8-pair SMF cabling considerations

- Not aware that anyone is proposing this in B400G SG
- Large volumes of G.652.D fiber, often also meeting G.657 for bend insensitivity, have been sold into hyperscale DCs in past 5+ years
- 144f, 288f, and similar, trunk cables are popular in switch fabrics inside one building. Both MPO-12 & MPO-24 trunk terminations utilized.
- Installations deploying PSM4 at 100G up to 500m with 4 pairs per link differ greatly from those focusing on CWDM4 at 100G with 1 pair per link.
- With appropriate connectivity, use of DR8 as dual-400GbE could be mapped to trunk cables deployed for 100GbE PSM4 or 400GbE DR4
- Adapting PSM4 or CWDM4 deployments for 800 GbE with DR8 may add considerable complexity, depending on:
 - greenfield vs. brownfield
 - Link counts \rightarrow needed fiber counts
 - Appropriate connectivity to map MPO-16 at TRx to MPO-12 & 24 at trunk cables

Proposed objectives for B400G Study Group

Propose B400G SG should adopt:

- 800 Gb/s operation over 8 pairs of MMF with lengths up to at least 50m (VR8)
- 800 Gb/s operation over 8 pairs of MMF with lengths up to at least 100m (SR8)

Propose B400G SG should further study:

 200 Gb/s & 800 Gb/s over up to at least 100m over 1 & 4 pairs, respectively, of MMF (SR1.2 & SR4.2)