Considerations on 100m objectives for B400G

Peter Stassar, Huawei Maxim Kuschnerov, Huawei

IEEE P802.3 B400G Study Group, Interim Teleconference, 15 March 2021

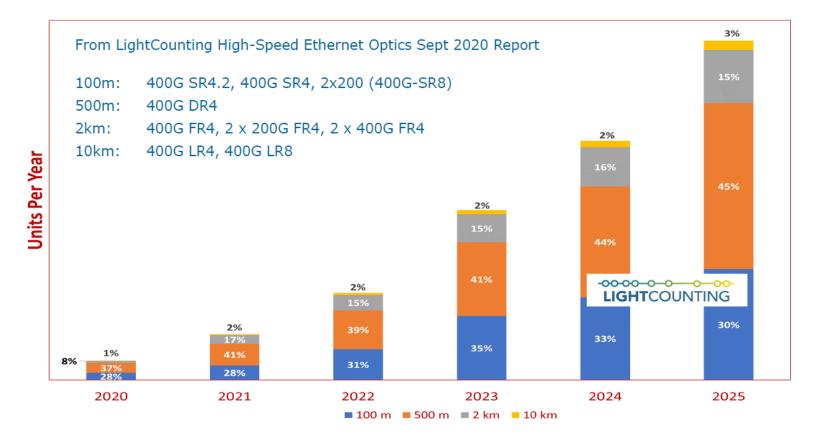
Introduction

This presentation contains considerations on potential objectives for 100 m applications in the B400G Study Group.

These are intended to initiate and support discussions on this topics towards the creation of suitable objectives to support the 100 m application space.

Considerations already made on applications other than 100 m

In <u>welch_b400g_01a_210208</u> the following potential objectives for SMF applications were suggested:


- 500m over four fibers with 3dB loss budget (per direction)
 - Example: 800GBASE DR4
- 2km over one fiber with 4dB loss budget (per direction)
 - Example: 800GBASE FR4
- TBD km over one fiber with 6dB loss budget (per direction)
 - Example: 800GBASE LR4 x
- Additional Consideration: 2km over four fibers with 4dB loss budget (per direction)
 - Example: 800GBASE DR4+

Observations:

- These options are all based on 4 lanes, each operating at 200 Gb/s.
- Addressing distances equal to or larger than 500 m.
- 200 Gb/s per lane on SMF assumed technically & economically feasible.

Expected market volumes

In <u>dambrosia</u> <u>b400g</u> <u>01</u> <u>210301</u> the following information was shown: Forecast – Transceiver Modules Targeting 200 GbE or 400 GbE

Market volume for 200G & 400G 100 m applications is significant

Existing 100 m PMDs and those under development

In previous projects the 100 m application space was always addressed by an objective specifically mentioning the usage of MMF fiber.

Existing PMDs:

- 802.3bs: 100 m PMDs over MMF were defined based upon 25 Gb/s NRZ per lane and per MMF.
- 802.3cd: 100 m PMDs over MMF were defined based upon 50 Gb/s PAM4 per lane and per MMF.
- 802.3cm: 100 m PMDs over MMF were defined based upon 50 Gb/s PAM4 per lane and per MMF, plus one for 2 wavelengths over one MMF.

<u>Under development:</u>

• P802.3db: both 50 m and 100 m PMDs based upon 100 Gb/s PAM per lane and MMF fiber.

Author's understanding of MMF technology

- Technologies at speeds up to 50 Gb/s PAM4 are sufficiently technically and economically feasible to support a single PMD over 100 m of MMF.
- At speeds of 100 Gb/s PAM4 solutions over 50 m of MMF are assumed to have optimum technical and economical feasibility, while solutions over 100 m MMF are technically feasible but the cost increase is non-negligible.
- This is evidenced by the discussions in the P802.3db Task Force around the creation of objectives for both 50 m and 100 m applications.
- Operating MMF at 200 Gb/s per lane probably not "trivial".
- Technical and/or economic feasibility of operation over any distance on MMF at 200 Gb/s per lane will need to be investigated.

Options to address 100 m application space

- One could address 800 Gb/s Ethernet applications over 100 m by 8 lane MMF solutions and 1.6 Tb/s Ethernet applications over 100 m by 16 lane MMF solutions, each operating at 100 Gb/s.
- These do not seem the desired and most effective approach.
- Alternatives:
 - Address 100 m application space by 500 m SMF solutions @ 200 Gb/s per lane, thus 4 lane solutions for 800 Gb/s Ethernet and 8 lane solutions for 1.6 Tb/s Ethernet.
 - Or develop SMF solutions @ 200 Gb/s per lane, cost optimized for 100 m.

Considerations on 100 m over SMF @ 200 Gb/s

- Generally all 500 m SMF PMDs, the so-called DR series, are based upon a channel insertion loss of ~3 dB.
- Reducing the maximum distance from 500 m to 100 m would seem to "save" only ~0.2 dB.
- Seems not sufficient to be sufficiently distinct from 500 m specifications, with 0.2 dB same order as measurement accuracy.
- However, MMF channel insertion losses for 100 m applications are generally specified just under 2 dB (1.8 dB to 1.9 dB).
- With 0.4 dB/km for SMF versus MMF loss max 3.5 dB/km this could be translated to 1.5 dB to 1.6 dB channel loss for 100 m SMF.

Assumptions on CSD distinct identity

- The whole concept of "distinct identity" in the CSD may not be sufficiently clear to (new) attendees to 802.3.
- For optical PMDs, does it mean that we can/can't have 2 different specifications to satisfy the same application/distance?
- For instance: if there would be an objective for a certain distance can we create two PMDs, one with m x 200 Gb/s and the other with n x 100 Gb/s, both for the same distance?
- Could we have an objective for x m for MMF and another for e.g. 100 m of SMF? To be discussed.

Closing suggestions for B400G Study Group

Investigate:

- Technical and economic feasibility of operation over any distance on MMF at 200 Gb/s per lane.
- Whether a channel loss of around 1.5 dB to 1.6 dB for 100 m SMF applications operating at 200 Gb/s per lane/fiber will support development of solutions with sufficiently lower cost compared to solutions developed for 500 m SMF applications.

Thanks!