Thoughts on the BER Objective

IEEE 802.3 Beyond 400 Gb/s Ethernet Study Group

Mark Gustlin - Cisco

Supporters

Cedric Lam - Google

Rob Stone – Facebook

Past History

- ➤ My recollection of the BER debate for 802.3bs (400/200GE) was:
 - Some system vendors in the past were held to: any bit errors were a bad thing in the system
 - They were able to do that since we had margin in our interfaces and systems (things were easier at slower lane rates)
 - This group wanted a better BER (1E-15 or better)
 - Many component focused participants liked the 1E-12 for: shorter test time, better yield etc.
 - A compromise was stuck at 1E-13, with some justification that it kept the errors/sec similar to the past (thanks for Pete Anslow's presentation)
 - This moved the bar somewhat without a radical departure from the past

Considerations for Beyond 400GE BER?

- > We should consider:
 - Mean Time To False Packet Acceptance (MTTFPA)
 - Application needs
 - Cost in terms of power and gates for implementations
- > We should not consider:
 - Errors/second (not too important if the application needs are met)

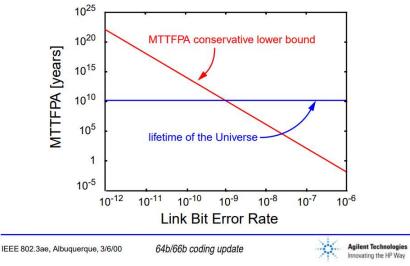
Other Work Referenced:

- ➤ This works cites MTTFPA as one criteria for deciding on the BER objective (or the equivalent FLR)
- ▶ If we have a strong FEC, such as RS(544,514), I don't think that is a concern?

Trade off needed for B400GbE BER objective

- Better BER objective, 1E-15, or lower?
 - End users expect error free, not considering cost or feasibility.
 - Large chassis and system with more Ethernet links will require lower bit error rate.
 - Longer test time 10x longer time at 208/104 minutes if lowering BER from 1E-14 to 1E-15 for 800GbE/1.6TbE respectively.
 - Longer test time 100x longer time at 2080/1040 minutes if lowering BER from 15 14 to 1E-16 for 800GbE/1.6TbE respectively, .
- Is 1E-14 BER objective acceptable?
 - MTTFPA and retraismission risk
 - reasibility from technical and economic perspective
 - Shorter test time

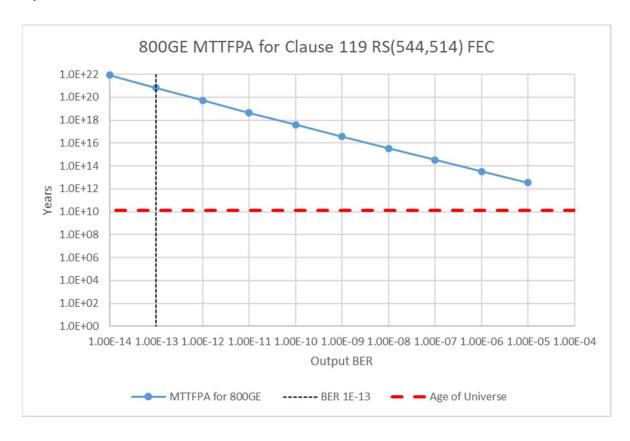
HUAWEI TECHNOLOGIES CO., LTD.


7/16

MTTFPA Importance

- The MTTFPA has been a metric used in Ethernet since at least 10GbE
 - Probably earlier, but I have not researched earlier
- > It tells us how often the Ethernet link at the minimum BER is likely to pass a packet without flagging it as a bad packet
 - In other words, how often is a corrupted packet silently passed
- Calculating MTTPA considers the following:
 - Error rates and error models
 - Detection provided by the encoding (64B/66B etc.)
 - Detection provided by any FEC
 - Detection provided by the CRC32
- > Rick Walker and company set the bar at:
 - The lifetime/age of the universe in the 10GE days

False Packet Acceptance Rate



http://www.omnisterra.com/walker/pdfs.talks/albuquerque.pdf

MTTFPA Calculations

- ➤ MTTFPA calculations show absolutely no concerns if we were to use the RS(544,514) FEC at these higher speeds and stayed at 1E-13 BER (or the equivalent FLR)
 - As long as error marking is on
 - All bets are off if you were to disable this...but why would you if you are concerned about passing bad packets
 - Thanks to Pete Anslow for his help on this!

	800GbE
rate (b/sec)	8E+11
post FEC BER	1.00E-12
pre-FEC BER	3.64E-04
Frame loss ratio	6.20E-10
Undetectable FEC rate	1.0E-16
Packet size (bytes)	1518
Packet size (bits)	12144
CRC covered bits	12016
Prob 0 errors in CRC covered bits	1.27E-02
Prob 1 error in CRC covered bits	5.53E-02
Prob 2 errors in CRC covered bits	1.21E-01
Prob 3 errors in CRC covered bits	1.76E-01
Prob 4 or more errors	6.35E-01
Packes with errors per sec	2.59E-18
CRC32	4294967296
MTTFPA (seconds)	1.7E+27
MTTFPA (years)	5.3E+19
Age of Universe (Years)	1.38E+10
Safety Factor	3.80E+09

Application Needs?

- ➤ I think this really boils down to: what do the applications that are common at these speeds require from a BER/FLR perspective?
- DC applications do care about post FEC BER, which cause packet drops
 - These cause retries which can be slow to occur, slowing down overall throughput
 - Critical need is tail latency for ML applications, one drop can cause an increase in ML latency
 - Applications can add in extra overhead/redundancy to withstand some drops
- Typical BER is often more important than worst case
 - Typical BER is normally several orders of magnitude better than worst case
 - This is what on average impact applications
- Assuming you meet a BER of at least 1E-13, saving power is more important than further improving of the BER
 - Power is the most critical limiting factor in today's data centers
- Overall: Balancing error rate with reduced power, complexity, latency and cost is critical to datacenter scaling

Summary

- ➤ In study group: Adopt 1E-13 or better as the objective and decide in task force if we want a better BER for some or all of the PHYs (or the equivalent FLR)
 - Once we make progress on FEC structures, overhead, cost of an improved BER etc.

Thanks!