Considerations on beyond 100G per lane electrical objectives

Yuchun LU, Yan ZHUANG, Huawei Technologies IEEE P802.3 B400G Study Group, Interim, 17 May 2021

Electrical interfaces are critical: a historical view!

[&]quot;Co-Packaging Optics (CPO)" means the AUI interface might different, or even disappear depends on the CPO implementation, "Optical interfaces" become the only maintainable interface which is diverse;

May 17, 2021 YUCHUN LU 2

[&]quot;Near-Package Optics (NPO)" needs standard AUI interface definition. But the pluggable feature may disappear. The "linecard/box" type may be diverse. The "CPO" and "NPO" lead to diverse "chip" or "linecard/box" design.

Roadmap for Long Reach SerDes technology

IEEE Project	IEEE802.3ap	IEEE802.3bj	IEEE 802.3cd	IEEE 802.3ck	TBD
Ethernet Rate	10G	100G	50/100/200G	100/200/400G	800/1600G
Timeline	2004~2007	2011~2014	2016~2018	2018~2021?	2021 ~ ?
Per-lane rate & modulation	10G NRZ	25G NRZ / PAM4	50G PAM4	100G PAM4	200G SE-PAM4? / PAM-4?
Insertion loss &	1m PCB backplane	35dB @12.89GHz NRZ 33dB@7GHz PAM4	30dB @13.28GHz	28dB @26.56GHz	22dB ?@?GHz
Reach objectives	w/o cable definition	5m cable	3m cable	2m cable	1.5 or 2.0m cable?
Transceiver architecture	Analog DFE	Analog DFE	Analog / DSP DFE / FFE+DFE	DSP FFE+DFE / MLSE	DSP MLSE / MIMO ?
PCB backplane ≤ 25Gbps over backplane		Cable backplane ≤ 56Gbps over cable backplane	On-board ca ≤ 112Gbps of flyover cab	over	Single-ended signaling / On- package cable > 112Gbps single- ended signaling or On-package cable?

^{*} Show only backplane applications.

Scenarios for electrical links

- Scenarios for electrical link:
 - Die-to-die, in/near-package-optics, host-to-CDR, chip-to-module.
 - Chip-to-chip, midplane/backplane/cable.
- Scenarios need to be considered for standardization:
 - Chip-to-Near-Package-Optics (C2NPO)
 - Chip-to-module (C2M)
 - Chip-to-chip (C2C)
 - Backplane & Cable (KR & CR)

Roadmap for beyond 100G SerDes

lu b400g 01 210322

- **Commonality** should be reserved as much as possible. Common signaling with application-specific performance is always preferred!
- Compatibility with at least one generation of slower speed SerDes should be reserved to support the hieratical deployment of networks.
- Analysis shows that 200G electrical interfaces are feasible.
 More investigations are needed in task force phase.
 - lyubomirsky_b400g_01_210329, healey_b400g_01a_210329, lu_b400g_01_210322.
- With "advanced signaling schemes", "advanced DSP algorithms" as well as "better channel design", 200G/lane KR/CR electrical interfaces are feasible.
- Technically, the "Commonality" and "Compatibility" can be reserved for 200G/lane electrical itnerfaces.

Commonality and Compatibility

- **Commonality**: 200G/lane transceiver with application-specific performance.
 - 25G NRZ: AMS (e.g. n-tap DFE) cover all the scenarios with configurable settings.
 - 50G PAM4:
 - AMS (e.g. n-tap DFE) covers all scenarios (CR/KR/C2C/C2M) with small margin and low power.
 - DSP (e.g. n-tap FFE + 1-tap DFE) covers all scenarios (CR/KR/C2C/C2M) with large margin.
 - 100G PAM4:
 - AMS (e.g. n-tap DFE) covers C2C/C2M for low power applications.
 - DSP (e.g. n-tap FFE + 1-tap DFE) covers all the scenarios (CR/KR / C2C/C2M).
 - 200G Signaling TBD:
 - AMS (e.g. n-tap DFE) covers C2M/C2NPO for low power applications.
 - DSP (e.g. m-tap FFE+1-tap DFE/MLSE) covers CR/KR/C2C / C2M/C2NPO.
- Compatibility: Support 100G/lane link with 200G/lane transceiver.
 - Support the hieratical deployment of networks.

Proposed Objectives (100G/lane for 800GbE)

- Define an eight-lane 800Gb/s Attachment Unit interface (AUI) for chip-to-module applications, compatible with PMDs based on 100Gb/s per lane optical signaling. (C2M)
- Define an eight-lane 800Gb/s Attachment Unit Interface (AUI) for chip-to-chip applications. (C2C)
- Define an eight-lane 800Gb/s PHY for operation over electrical backplanes supporting an insertion loss ≤ 28 dB at 26.56 GHz. (KR)
- Define an eight-lane 800Gb/s PHY for operation over twin-axial copper cables with lengths up to at least 2 m. (CR)

Follow 100G/lane electrical objectives defined in 802.3ck for 8*100GbE

Proposed Objectives (200G/lane for 800GbE)

- Define a four-lane 800Gb/s Attachment Unit interface (AUI) for chip-to-module applications, compatible with PMDs based on 200Gb/s per lane optical signaling. (C2M)
- Define a four-lane 800Gb/s Attachment Unit Interface (AUI) for chip-to-chip applications. (C2C)
- Define a four-lane 800Gb/s Attachment Unit interface (AUI) for chip-to-near-package-optics applications, compatible with PMDs based on 200Gb/s per lane optical signaling. (or merged with C2C and C2M objectives)
- Define a four-lane 800Gb/s PHY for operation over electrical backplanes supporting an insertion loss ≤ TBD(22?) dB at TBD GHz. (KR)
- Define a four-lane 800Gb/s PHY for operation over copper cables with lengths up to at least TBD(1.5 or 2.0?) m. (CR)

Proposed Objectives (200G/lane for 1.6TbE)

- Define an eight-lane 1.6Tb/s Attachment Unit interface (AUI) for chip-to-module applications, compatible with PMDs based on 200Gb/s per lane optical signaling. (C2M)
- Define an eight-lane 1.6Tb/s Attachment Unit Interface (AUI) for chip-to-chip applications. (C2C)
- Define an eight-lane 1.6Tb/s Attachment Unit interface (AUI) for chip-to-near-package-optics applications, compatible with PMDs based on 200Gb/s per lane optical signaling. (or merged with C2C and C2M objectives)
- Define an eight-lane 1.6Tb/s PHY for operation over electrical backplanes supporting an insertion loss ≤ TBD(22?) dB at TBD GHz. (KR)
- Define an eight-lane 1.6Tb/s PHY for operation over copper cables with lengths up to at least TBD(1.5 or 2.0?) m. (CR)

Proposed Objectives (200G/lane for 200GbE)

- Define a single-lane 200Gb/s Attachment Unit interface (AUI) for chip-to-module applications, compatible with PMDs based on 200Gb/s per lane optical signaling. (C2M)
- Define a single-lane 200Gb/s Attachment Unit Interface (AUI) for chip-to-chip applications. (C2C)
- Define a single-lane 200Gb/s Attachment Unit interface (AUI) for chip-to-near-package-optics applications, compatible with PMDs based on 200Gb/s per lane optical signaling. (or merged with C2C and C2M objectives)
- Define a single-lane 200Gb/s PHY for operation over electrical backplanes supporting an insertion loss ≤ TBD(22?) dB at TBD GHz. (KR)
- Define a single-lane 200Gb/s PHY for operation over copper cables with lengths up to at least TBD(1.5 or 2.0?) m. (CR)

Proposed Objectives (200G/lane for 400GbE)

- Define a two-lane 400Gb/s Attachment Unit interface (AUI) for chip-to-module applications, compatible with PMDs based on 200Gb/s per lane optical signaling. (C2M)
- Define a two-lane 400Gb/s Attachment Unit Interface (AUI) for chip-to-chip applications. (C2C)
- Define a two-lane 400Gb/s Attachment Unit interface (AUI) for chip-to-near-package-optics applications, compatible with PMDs based on 200Gb/s per lane optical signaling. (or merged with C2C and C2M objectives)
- Define a two-lane 400Gb/s PHY for operation over electrical backplanes supporting an insertion loss ≤ TBD(22?) dB at TBD GHz. (KR)
- Define a two-lane 400Gb/s PHY for operation over copper cables with lengths up to at least TBD(1.5 or 2.0?) m. (CR)

Summary and Recommendation

- Proposed objectives for 100G/lane 800GbE electrical interfaces (follow 100G/lane electrical objectives defined in 802.3ck for 8*100GbE).
 - 8*100G/lane based AUIs including C2M and C2C.
 - 8*100G/lane PHYs including CR and KR.
- Proposed objectives for 200G/lane electrical interfaces.
 - N*200G/lane based AUIs including C2M, C2C and C2NPO(or merged with C2M and C2C).
 - N*200G/lane PHYs including CR and KR.
 - N=1, 2, 4, 8.
- End-to-End FEC covers all potential B400G AUIs and optical PHYs (200G/lane)?
- Recommendation
 - Commonality: 200G/lane transceiver with application-specific performance.
 - Compatibility: Support 100G/lane link with 200G/lane transceiver.

Thanks! Q&A

200G PAM Signaling Comparison

Bandwidth limited

Bandwidth limited

Jitter limited

Mod	dulation	Symbol Rate (GBaud)	Unit Interval (ps)	Nyquist Frequency (GHz)	Bandwidth Requirements ** (GHz)	Bits per Symbol	# of Levels	Penalty @SER=1e-4 (Amplicude Normalized)	Penalty @SER=1e-4 (Power Normalized)
PAM4	Regular	106.25	9.4	53.125 <	80	2/1	4	б.00 @53GHz	0.00 @106GHz
	PR	106.25	9.4	26.5625*	40*	2/1	1	6.14 @26GHz*	3.13 @53GHz
	SE	53.125	18.82	26.5625	40	4/1	4 (x2)	6.02 @26GHz	3.01 @53GHz
PAM6	CROSS-32	85	11.76	42.5	64	5/2	6	4.89 @43GHz	3.46 @85GHz
PAM8	DSQ-32	85	11.76	42.5	64	5/2	8	4.81 @43GHz	3.68 @85GHz
	Regular	70.83	14.12	35.42	53	3/1	8 <	7.45 @35GHz	6.32 @71GHz

^{*} Estimated as 1 / 4 of Baud Rate. ** frequency range with smooth IL or small ILD.

PAM4

DSQ-32 (PAM8)

SNR limited

PAM8