Analysis of SAS 6Gbps Backplanes Using Annex 69B of 802.3

Anthony Calbone | 10/22/2015

Introduction

- 51 channel configurations were compared
 - They are listed on the last slide of this presentation
 - The configurations weren't always clear, so some assumptions were made
- Annex 69B methodology was used to compare the SAS channels to 1000BASE-KX, 10GBASE-KX4, and 10GBASE-KR informative interconnect characteristics

Spec Compliance Points Comparison

The compliance points of the two standards

- They both include the mated connectors
 - 802.3: TP1 -> TP4
 - SAS: ITs -> IR
- What is unclear is the how the characteristics of the rest of the channel compares
 - SAS provides a reference Tx and Rx model with -1.8dB of insertion loss each at 3.125GHz

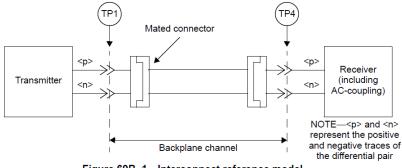
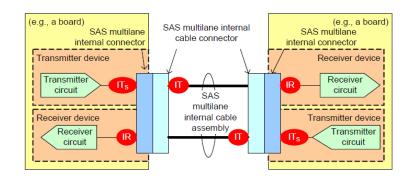



Figure 69B–1—Interconnect reference model

Spec Compliance Points Comparison Cont'd

- The wording in Annex 69B makes it sound like this is a full channel (die-to-die) spec
- This presentation compares the channels directly, so the channel performance to spec comparisons may not be applesto-apples

Informative characteristics and methods of calculation for the insertion loss, insertion loss deviation, return loss, crosstalk, and the ratio of insertion loss to crosstalk between TP1 and TP4 are defined in 69B.4.3, 69B.4.4, 69B.4.5, 69B.4.6, and 69B.4.6.4 respectively. These characteristics may be applied to a specific implementation of the full path (including transmitter and receiver packaging and supporting components) for a complete assessment of system performance and the interaction of these components.

Annex 69B of 802.3

Various frequency ranges are used for the different parameters

• Fitted Attenuation (IL Fit)

 $- \ f_1 \ to \ f_2$

Insertion Loss

- $f_{min}\ to\ f_{max}$

Insertion Loss Deviation (ILD)

 $- f_1 to f_2$

Return Loss

- 50 MHz to line rate

ICR Fit

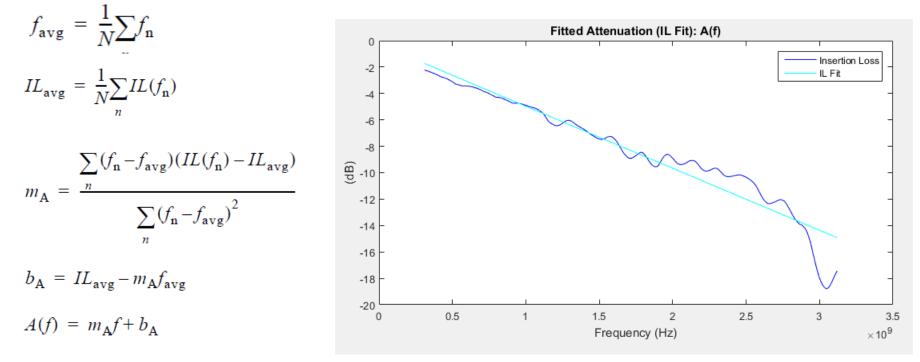
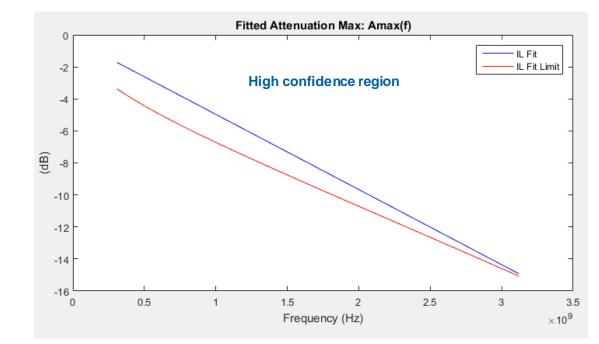

 $-\,\,f_{a}\,\,to\,f_{b}$

Table 69B–1—Insertion loss parameters

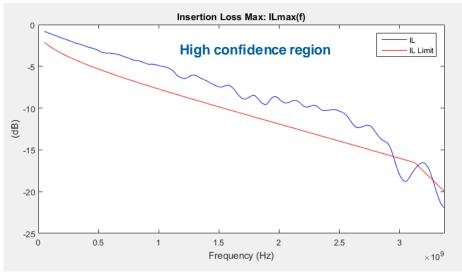
Parameter	1000BASE-KX	10GBASE-KX4	10GBASE-KR 40GBASE-KR4	Units		
f_{\min}	0.05					
$f_{\rm max}$	15.00					
<i>b</i> ₁	2.00×10^{-5}					
<i>b</i> ₂	1.10×10^{-10}					
<i>b</i> ₃	$3.20 imes 10^{-20}$					
<i>b</i> ₄	$-1.20 imes 10^{-30}$					
f_1	0.125	0.312	1.000	GHz		
f_2	1.250	3.125	6.000	GHz		
f _a	0.100	0.100	0.100	GHz		
fь	1.250	3.125	5.15625	GHz		


Fitted Attenuation

Fitted attenuation is the least mean squared line fit of the insertion loss from f_1 to f_2

Fitted Attenuation Spec

 $A(f) \le A_{\max}(f) = 20\log_{10}(e) \times (b_1\sqrt{f} + b_2f + b_3f^2 + b_4f^3)$



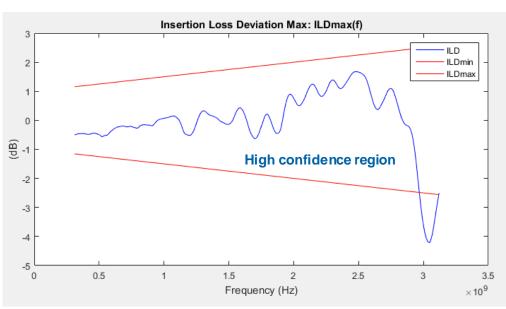
Insertion Loss Spec

 $IL(f) \le IL_{\max}(f) = A_{\max}(f) + 0.8 + 2.0 \times 10^{-10} f$ for $f_{\min} \le f \le f_2$

 $IL(f) \le IL_{\max}(f) = A_{\max}(f) + 0.8 + 2.0 \times 10^{-10} f_2 + 1 \times 10^{-8} (f - f_2)$

for $f_2 < f \le f_{\max}$

Insertion Loss Deviation and Corresponding Spec


Insertion loss deviation is the difference between the insertion loss and the fitted attenuation

ILD(f) = IL(f) - A(f)

$$ILD(f) \ge ILD_{\min}(f) = -1.0 - 0.5 \times 10^{-9} f$$

$$ILD(f) \le ILD_{\max}(f) = 1.0 + 0.5 \times 10^{-9} f$$

for $f_1 \leq f \leq f_2$.

Return Loss Spec

 $RL(f) \ge RL_{\min}(f) = 12$

for 50 MHz $\leq f < 275$ MHz and Return Loss $RL(f) \ge RL_{\min}(f) = 12 - 6.75 \log_{10}(f)$ 275 MHz -10 -15 -20 for 275 MHz $\leq f < 3000$ MHz and (gp) **High confidence region** -30 $RL(f) \ge RL_{\min}(f) = 5$ -35 -40 -45 for 3000 MHz $\leq f \leq$ 10312.5 MHz. -50 0.5 1.5 2 2.5 1 Frequency (Hz)

Sdd11 Sdd22

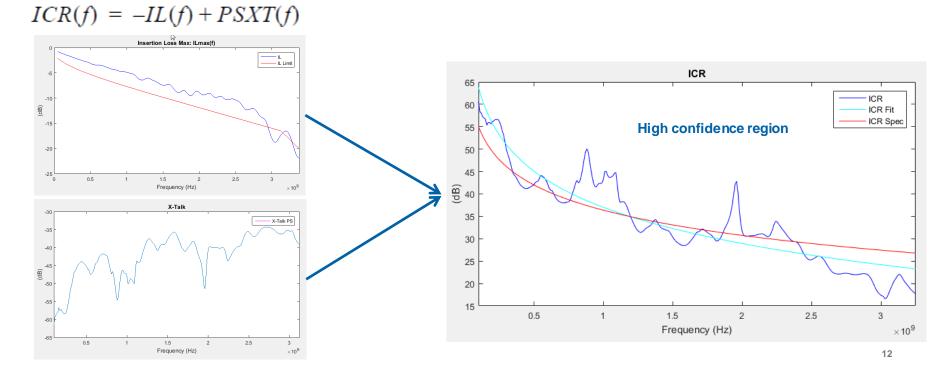
RL Limit

3 × 10⁹

X-Talk

X-Talk is power summed for use in the ICR spec

 $PSXT(f) = -10\log(10^{-PSNEXT(f)/10} + 10^{-PSFEXT(f)/10})$ X-Talk -20 $PSNEXT(f) = -10\log\left(\sum 10^{-NEXT_n(f)/10}\right)$ -30 -40 $PSFEXT(f) = -10\log\left(\sum 10^{-FEXT_n(f)/10}\right)$ -50 (dB) п -60 -70 X-Talk PS -80 ₽-⁹⁰ 2 3 6 7 8 9 1 Frequency (Hz)


10

 $\times 10^9$

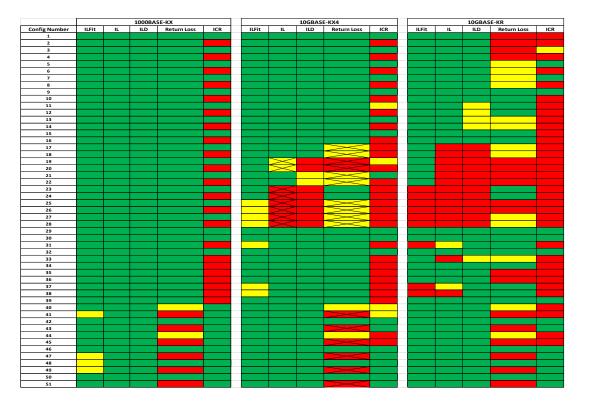
Insertion Loss To X-Talk Ratio (ICR)

ICR is the difference between the insertion loss and the power sum of X-Talk

- A least mean square line fit is then done to ICR

SAS Channel Analysis Results

Color code


- Green: Parameter is within the high confidence region
- Yellow: Parameter is within 1dB of the high confidence region
- Red: Parameter is outside of the high confidence region + 1dB padding

"X" Marking

- "X" indicates that the parameter also fails the 6Gbps SAS spec
 - IL, RL, and ICR were analyzed to the SAS spec
- There is no direct 6G SAS insertion loss spec. To establish spec compliance for a channel, a simulation must be run with the reference Tx and Rx. For the results in this presentation, I compared the insertion loss of the channel to the SAS 6G reference channel from 100MHz to 3GHz.
- The 12G SAS ICR spec was used for ICR comparison
- The "X" is only used on 10GBASE-KX4 results

Annex 69B Results

These results compare the channels directly to the spec in Annex 69B

- The ICR spec is very difficult for SAS channels as even 1000BASE-KX has a significant number of failures
- As expected, there is more red as you go higher in frequency
- Not all of these channels meet the SAS 6Gbps spec
- Good correlation (from a channel perspective) between the standards on IL and RL, but not ICR

ICR Comparison Using Different Spec's

1000BASE-KX is not shown, but is all green except for Annex 69B

	10GBASE-KX4			1	10GBASE-KR				
Config Number	Annex 69B	25dB ICR	25dB ICR Direct	15dB ICR Direct		Annex 69B	25dB ICR	25dB ICR Direct	15dB ICR Direct
1									
2									
3									
4									
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									
16 17									
17 18									
18									
20									
21									
22									
23									
24									
25									
26									
27									
28									
29									
30 31									
31 32									
33									
34									
35									
36					1				
37									
38									
39									
40									
41									
42									
43 44									
44 45									
45									
46 47									
47									
40									
50									
51									

ICR Descriptions

- Annex 69B
 - Spec as defined in Annex 69B
- 25dB ICR
 - A 25dB ICR spec was used across all frequencies
- 25dB ICR Direct
 - A 25dB ICR spec was used across all frequencies
 - An ICR fit was not used
 - The ICR was used directly
- 15dB ICR Direct
 - Same as above, but with a 15dB spec
 - 12G SAS is defined this way

Summary

- The ICR spec seems to be the biggest issue from a channel perspective
 - The port A connector on SAS was taken from SATA rev 1. This was back in 2003 and the line rate was 1.5Gbps
 - This connector is still in use today and provides a constant X-Talk battle at higher frequencies
 - The X-Talk results should improve if the SAS reference Tx and Rx are included as they would attenuate the X-Talk with added insertion loss
- Need PHY simulation results with these channels to understand system performance
- Need to understand the compliance point differences between SAS and Backplane Ethernet
 - The results will change if more loss is added to the current channels

I see Annex 69B as a useful tool for system designers

- The issue being that the ICR spec will fail most 6G SAS channels, so the pass/fail results aren't very useful
- Should consider updating Annex 69B with CU4HDD standards and include a realistic ICR spec for SAS channels

Configurations used

Config Numbe	r Channel	X-Talk
	1 HP01	HP19_XT
	2 HP01	HP15_XT+HP16_XT+HP17_XT+HP18_XT+HP17_XT+HP18_XT
	3 HP02	HP19_XT
	4 HP02	HP15_XT+HP16_XT+HP17_XT+HP18_XT+HP17_XT+HP18_XT
	5 HP03	HP19_XT
	6 HP03	HP15 XT+HP16 XT+HP17 XT+HP18 XT+HP17 XT+HP18 XT
	7 HP04	HP19_XT
	8 HP04	HP15_XT+HP16_XT+HP17_XT+HP18_XT+HP17_XT+HP18_XT
	9HP05	HP19_XT
	10 HP05	HP15_XT+HP16_XT+HP17_XT+HP18_XT+HP17_XT+HP18_XT
	11 HP06	HP19_XT
	12 HP06	HP15 XT+HP16 XT+HP17 XT+HP18 XT+HP17 XT+HP18 XT
	13HP07	HP19_XT
	14 HP07	HP15_XT+HP16_XT+HP17_XT+HP18_XT+HP17_XT+HP18_XT
	15HP08	HP15_X1+HP16_X1+HP17_X1+HP16_X1+HP17_X1+HP18_X1 HP19_XT
	16HP08	
	16 HP08 17 HP09	HP15_XT+HP16_XT+HP17_XT+HP18_XT+HP17_XT+HP18_XT HP19_XT
	18HP09 19HP10	HP15_XT+HP16_XT+HP17_XT+HP18_XT+HP17_XT+HP18_XT HP19_XT
	20HP10 21HP11	HP15_XT+HP16_XT+HP17_XT+HP18_XT+HP17_XT+HP18_XT HP19_XT
	22 HP1 1 23 HP24	HP15_XT+HP16_XT+HP17_XT+HP18_XT+HP17_XT+HP18_XT HP19_XT
	24 HP24 25 HP25	HP15_XT+HP16_XT+HP17_XT+HP18_XT+HP17_XT+HP18_XT HP19_XT
	26 HP25	HP15_XT+HP16_XT+HP17_XT+HP18_XT+HP17_XT+HP18_XT
	27 HP26	HP19_XT
	28 HP26	HP15_XT+HP16_XT+HP17_XT+HP18_XT+HP17_XT+HP18_XT
	29 long_board_to_drive_oldconn	long_board_to_drive_oldconn_next
	30 short_board_to_drive_ddcom	short board_to_drive_ddcom_next
	31 long_board_to_board	long_board_to_board_FEXT
	32 short_board_to_board	short_board_to_board_FEXT
	33b1_thu 34b2_thu	b1_next_hdd b2_next_hdd
	35c1_thu	c1_next_hdd
	36c2_thu	c2_next_hdd
	37 d1_thu	d1_next_hdd
	38d2_thu	d2_next_hdd
	39a2_thu	a2_next_hdd
	40 Intel_HDD_BP_C_MB_03_thru	Intel_HDD_BP_C_MB_03_FEXT
	41 Intel_HDD_BP_C_MB_04_thru	Intel_HDD_BP_C_MB_04_FEXT
	42 Intel_HDD_SC_MB_11	Intel_HDD_SC_MB_11_FEXT
	43 Intel_HDD_SC_MB_12	Intel_HDD_SC_MB_12_FEXT
	44 Intel_MB_C_BP_HDD_01_thru	Intel_MB_C_BP_HDD_01_FEXT
	45 Intel_MB_C_BP_HDD_02_thru	Intel_MB_C_BP_HDD_02_FEXT
	46 Intel_MB_LC_HDD_05	Intel_MB_LC_HDD_05_FEXT
	47 Intel_MB_LC_HDD_06	Intel_MB_LC_HDD_06_FEXT
	48 Intel_MB_LC_HDD_07 49 Intel_MB_LC_HDD_08	Intel_MB_LC_HDD_07_FEXT Intel_MB_LC_HDD_08_FEXT
	50 Intel MB SC HDD 09	Intel MB SC HDD 09 FEXT
	51 Intel_MB_SC_HDD_10	Intel_MB_SC_HDD_10_FEXT