

Evolution and co-existence for extended EPON PMDs

IEEE 802.3 plenary meeting, Waikoloa, HI, US March 12–15, 2012

Agenda

- Overview
- Assumptions for numeric calculations
- Coexistence scenarios
 - PX20 and PR(X)20 coexistence
 - PR(X)20 and PR(X)30 coexistence
 - PR(X)20, PR(X)30 and PR(X)40 coexistence
 - PX20 and PX30 coexistence
 - PX20, PX30 and PX40 coexistence

Background of EPON evolution

Market Requirement

• Co-existence of 1G-EPON and 10G-EPON is needed in multiple mixed residential deployments

Standard Support

• IEEE Std 802.3av supports coexistence with IEEE Std 802.3ah out of the box

EPON evolution through backward compatibility and coexistence

- 802.3av defined dual-rate, burst-mode operation scheme for OLT, providing coexistence option with 802.3ah devices (mrOLT)
- It allows 1G–EPON and 10G–EPON devices to coexist without the need for extra optical components (WDM1/WDM1r in XG–PON speak).
- A single OLT can control 1G–EPON and 10G–EPON devices, saving on port density, shelf space and facilitating upgrade for operators.

Assumptions for numeric calculations

- Using 802.3, Clause 60 and 802.3av PMD parameters, we show the applicability of coexistence of multiple PMD types on the same ODN.
- Main assumptions for the model are listed below.
- mrOLT uses PR(X)30-type PMD, capable of operating at 10G downstream and 10G/1G upstream
- Power budget calculations account for TDP defined per standard and use the following formula: Tx (power) TDP Rx (sensitivity). This allows for direct comparison between available power budget and ODN loss calculated as shown below
- For ODN loss calculations, the 802.3av approved spreadsheet calculator is used:
 - available at http://www.ieee802.org/3/av/public/tools/3av_0804_linkmodel_v2_3.xls
 - Average PSC loss curve was used for calculations
 - Minimum fibre loss curves were used (very pessimistic value anyway when compared with existing products)
- Positive power budget indicates that the given selected combination of PMDs can support the given ODN (fiber and splitter combination) loss budget

PX20 and PR(X)30 coexistence

- In this scenario, an operator is assumed to migrate from 24dB ODN with PX20 class devices to 29dB ODN, by locally adding 1:2 splitters in selected locations where customer demand is higher.
- This requires replacement of the OLT card to support PR(X)30 class power budget and use of PR(X)30 class ONUs for newly added branches.

PX20 class ONUs with PR(X)30 class OLT

- Downstream (1G)
 - Power budget: +2 2.3 (-24) = 23.7 dB
 - ODN loss: 5.52+14= 19.52 dB
 - Power budget margin: +4.18 dB
 - Conclusions: PX20 ONU receive optical signal within sensitivity limit of their Rx
- Upstream (1G)
 - Power budget: +1 1.8 (– 29.78) = 28.98 dB
 - ODN loss: 8.36+14 = 22.36 dB
 - Maximum power level at OLT Rx: +4 1.8 22.36 = 20.16 dBm
 - Power budget margin: +6.62 dB
 - Damage threshold of OLT Rx: –5dBm >> –20.16 dBm (observed max)
 - Conclusions: PRX30 OLT PMD receives optical signal within sensitivity limit of its Rx; Rx operates with large safety margin from damage threshold

PR30 and PRX30 class ONUs with PR(X)30 class OLT

- Downstream (10G)
 - Power budget: +2 1.5 (-28.5) = 29 dB
 - ODN loss: 5.52+17.41= 22.93 dB
 - Power budget margin: +6.07 dB
 - Conclusions: both ONUs receive optical signal within sensitivity limit of their Rx

• Upstream (1G)

- Power budget: +0.62 1.4 (– 29.78) = 29 dB
- ODN loss: 8.36+17.41= 25.77 dB
- Maximum power level at OLT Rx: +5.62 1.4 25.77 = -21.55 dBm
- Power budget margin: +3.23 dB
- Damage threshold of OLT Rx: -5dBm >> -21.55 dBm (observed max)??
- Conclusions: PRX30 OLT PMD receives optical signal within sensitivity limit of its Rx; Rx operates with large safety margin from damage threshold

- Power budget: 4 3 (– 28.0) = 29 dB
- ODN loss: 8.36+17.41= 25.77 dB
- Maximum power level at OLT Rx: +9 3 25.77 = -19.77 dBm
- Power budget margin: +3.23 dB
- Damage threshold of OLT Rx: -5dBm >> 19.77 dBm (observed max)
- Conclusions: PR30 OLT PMD receives optical signal within sensitivity limit of its Rx; Rx operates with large safety margin from damage threshold

PR(X)20 and PR(X)30 coexistence

- In this scenario, an operator is assumed to migrate from 24dB ODN with PR(X)20 class devices to 29dB ODN, by locally adding 1:2 splitters in selected locations where customer demand is higher.
- This requires replacement of the OLT card to support PR(X)30 class power budget and use of PR(X)30 class ONUs for newly added branches.

PR20 and PRX20 class ONUs with PR(X)30 class OLT

- Downstream (10G)
 - Power budget: +2 1.5 (-20.5) = 21 dB
 - ODN loss: 5.52+14= 19.52 dB
 - Power budget margin: +1.48 dB
 - Conclusions: both ONUs receive optical signal within sensitivity limit of their Rx

• Upstream (1G)

- Power budget: +1 1.8 (– 29.78) = 28.98 dB
- ODN loss: 8.36+14 = 22.36 dB
- Maximum power level at OLT Rx: +4 1.8 22.36 = 20.16 dBm
- Power budget margin: +6.62 dB
- Damage threshold of OLT Rx: -5dBm >> -20.16 dBm (observed max)
- Conclusions: PRX30 OLT PMD receives optical signal within sensitivity limit of its Rx; Rx operates with large safety margin from damage threshold

- Power budget: -1 3 (-28.0) = 24 dB
- ODN loss: 8.36+14 = 22.36 dB
- Maximum power level at OLT Rx: +4 3 22.36 = 21.36 dBm
- Power budget margin: +1.64 dB
- Damage threshold of OLT Rx: -5dBm >> 21.36 dBm (observed max)
- Conclusions: PR30 OLT PMD receives optical signal within sensitivity limit of its Rx; Rx operates with large safety margin from damage threshold

PR30 and PRX30 class ONUs with PR(X)30 class OLT

- Downstream (10G)
 - Power budget: +2 1.5 (-28.5) = 29 dB
 - ODN loss: 5.52+17.41= 22.93 dB
 - Power budget margin: +6.07 dB
 - Conclusions: both ONUs receive optical signal within sensitivity limit of their Rx

• Upstream (1G)

- Power budget: +0.62 1.4 (– 29.78) = 29 dB
- ODN loss: 8.36+17.41= 25.77 dB
- Maximum power level at OLT Rx: +5.62 1.4 25.77 = -21.55 dBm
- Power budget margin: +3.23 dB
- Damage threshold of OLT Rx: -5dBm >> -21.55 dBm (observed max)
- Conclusions: PRX30 OLT PMD receives optical signal within sensitivity limit of its Rx; Rx operates with large safety margin from damage threshold

- Power budget: 4 3 (– 28.0) = 29 dB
- ODN loss: 8.36+17.41= 25.77 dB
- Maximum power level at OLT Rx: +9 3 25.77 = -19.77 dBm
- Power budget margin: +3.23 dB
- Damage threshold of OLT Rx: -5dBm >> 19.77 dBm (observed max)
- Conclusions: PR30 OLT PMD receives optical signal within sensitivity limit of its Rx; Rx operates with large safety margin from damage threshold

PR(X)20, PR(X)30 and PR(X)40 coexistence

PR(X)40 OLT and ONU PMDs use parameters proposed in <u>http://www.ieee802.org/3/EXTND_EPON/public/1201/ExEPON_1201_li_2.pdf</u>

PR20 and PRX20 class ONUs with PR(X)40 class OLT

- Downstream (10G)
 - Power budget: +5 1.5 (-20.5) = 24 dB
 - ODN loss: 5.52 + 14 = 19.52 dB
 - Power budget margin: +4.48 dB
 - Conclusions: both ONUs receive optical signal within sensitivity limit of their Rx

• Upstream (1G)

- Power budget: -1 1.8 (- 32) = 29.2 dB
- ODN loss: 8.36 + 14 = 22.36 dB
- Maximum power level at OLT Rx: +4 1.8 22.36 = 20.16 dBm
- Power budget margin: +6.84 dB
- Damage threshold of OLT Rx: -5dBm >> -20.16 dBm (observed max)
- Conclusions: PRX40 OLT PMD receives optical signal within sensitivity limit of its Rx; Rx operates with large safety margin from damage threshold

- Power budget: -1 3 (-29.0) = 26 dB
- ODN loss 8.36 + 14 = 22.36 dB
- Maximum power level at OLT Rx: +4 3 22.36 = 21.36 dBm
- Power budget margin: +3.64 dB
- Damage threshold of OLT Rx: -5dBm >> 21.36 dBm (observed max)
- Conclusions: PR40 OLT PMD receives optical signal within sensitivity limit of its Rx; Rx operates with large safety margin from damage threshold

PR30 and PRX30 class ONUs with PR(X)40 class OLT

- Downstream (10G)
 - Power budget: +5 1.5 (-28.5) = 32 dB
 - ODN loss: 5.52+17.41 = 22.93 dB
 - Power budget margin: +9.07 dB
 - Conclusions: both ONUs receive optical signal within sensitivity limit of their Rx

• Upstream (1G)

- Power budget: +0.62 1.4 (- 32) = 31.22 dB
- ODN loss: 8.36+17.41 = 25.77 dB
- Maximum power level at OLT Rx: +5.62 1.4 25.77 = 21.55 dBm
- Power budget margin: +5.45 dB
- Damage threshold of OLT Rx: -5dBm >> -21.55 dBm (observed max)
- Conclusions: PRX40 OLT PMD receives optical signal within sensitivity limit of its Rx; Rx operates with large safety margin from damage threshold

- Power budget: 4 3 (– 29.0) = 30 dB
- ODN loss: 8.36+17.41 = 25.77 dB
- Maximum power level at OLT Rx: +9 3 25.77 = 19.77 dBm
- Power budget margin: +4.23 dB
- Damage threshold of OLT Rx: -5dBm >> 19.77 dBm (observed max)
- Conclusions: PR40 OLT PMD receives optical signal within sensitivity limit of its Rx; Rx operates with large safety margin from damage threshold

PR40 and PRX40 class ONUs with PR(X)40 class OLT

- Downstream (10G)
 - Power budget: +5 1.5 (–29.5) = 33 dB
 - ODN loss: 5.52+20.81= 26.33 dB
 - Power budget margin: +6.67 dB
 - Conclusions: both ONUs receive optical signal within sensitivity limit of their Rx

• Upstream (1G)

- Power budget: +2 1 (- 32) = 33 dB
- ODN loss: 8.36+20.81 = 29.17 dB
- Maximum power level at OLT Rx: +7 1 29.17 = 23.17 dBm
- Power budget margin: +3.83 dB
- Damage threshold of OLT Rx: -5dBm >> -23.17 dBm (observed max)
- Conclusions: PRX40 OLT PMD receives optical signal within sensitivity limit of its Rx; Rx operates with large safety margin from damage threshold

- Power budget: 6 2 (– 29.0) = 33 dB
- ODN loss: 8.36+20.81 = 29.17 dB
- Maximum power level at OLT Rx: +10 2 29.17 = 21.17 dBm
- Power budget margin: +3.83 dB
- Damage threshold of OLT Rx: -5dBm >> 21.17 dBm (observed max)
- Conclusions: PR40 OLT PMD receives optical signal within sensitivity limit of its Rx; Rx operates with large safety margin from damage threshold

PX20 and PX30 coexistence

- In this scenario, we examine the coexistence between PX20 and PX30 ONUs on the same ODN, representing a migration and evolution scenario for operators that have already deployed PX20 compatible ODN.
- PX30 OLT and ONU PMDs use parameters proposed in <u>http://www.ieee802.org/3/EXTND_EPON/public/1201/ExEPON_1201_li_2.pdf</u>

PX20 class ONUs with PX30 class OLT

- Downstream (1G)
 - Power budget: +3 1.0 (–24) = 26 dB
 - ODN loss: 5.52+14 =19.52 dB
 - Power budget margin: +6.48 dB
 - Conclusions: PX20 ONU receive optical signal within sensitivity limit of their Rx
- Upstream (1G)
 - Power budget: +1 1.8 (– 30) = 29.2 dB
 - ODN loss: 8.36+14= 22.36 dB
 - Maximum power level at OLT Rx: +4 1.8 22.36 = 20.16 dBm
 - Power budget margin: +6.84 dB
 - Damage threshold of OLT Rx: –3dBm >> –20.16 dBm (observed max)
 - Conclusions: PX30 OLT PMD receives optical signal within sensitivity limit of its Rx; Rx operates with large safety margin from damage threshold

PX30 class ONUs with PX30 class OLT

- Downstream (1G)
 - Power budget: +3 1.0 (–27) = 29 dB
 - ODN loss: 5.52+17.41 =22.93 dB
 - Power budget margin: +6.07 dB
 - Conclusions: PX30 ONU receive optical signal within sensitivity limit of their Rx
- Upstream (1G)
 - Power budget: +1 2 (– 30) = 29 dB
 - ODN loss: 8.36+17.41 =25.77
 - Maximum power level at OLT Rx: +4 2 25.77 = 23.77 dBm
 - Power budget margin: +3.23 dB
 - Damage threshold of OLT Rx: –5dBm >> –23.77 dBm (observed max)
 - Conclusions: PX30 OLT PMD receives optical signal within sensitivity limit of its Rx; Rx operates with large safety margin from damage threshold

PX20, PX30 and PX40 coexistence under ExEPON

PX40 and PX30 OLT and ONU PMDs use parameters proposed in <u>http://www.ieee802.org/3/EXTND_EPON/public/1201/ExEPON_1201_li_2.pdf</u>

PX20 class ONUs with PX40 class OLT

- Downstream (1G)
 - Power budget: +4 1.0 (–24) = 27 dB
 - ODN loss: 5.52+14 = 19.52 dB
 - Power budget margin: +7.48 dB
 - Conclusions: PX20 ONU receive optical signal within sensitivity limit of their Rx
- Upstream (1G)
 - Power budget: +1 1.8 (– 32) = 31.2 dB
 - ODN loss: 8.36+14 = 22.37 dB
 - Maximum power level at OLT Rx: +4 1.8 22.37 = 20.17 dBm
 - Power budget margin: +8.83 dB
 - Damage threshold of OLT Rx: –3dBm >> –20.17 dBm (observed max)
 - Conclusions: PX40 OLT PMD receives optical signal within sensitivity limit of its Rx; Rx operates with large safety margin from damage threshold

PX30 class ONUs with PX40 class OLT

- Downstream (1G)
 - Power budget: +4 1.0 (–27) = 30 dB
 - ODN loss: 5.52+17.41 = 22.93 dB
 - Power budget margin: +7.07 dB
 - Conclusions: PX30 ONU receive optical signal within sensitivity limit of their Rx
- Upstream (1G)
 - Power budget: +1 2 (– 32) = 31 dB
 - ODN loss: 8.36+17.41 = 25.77 dB
 - Maximum power level at OLT Rx: +4 2 25.77 = 23.77 dBm
 - Power budget margin: 5.23 dB
 - Damage threshold of OLT Rx: –3dBm >> –23.77 dBm (observed max)
 - Conclusions: PX40 OLT PMD receives optical signal within sensitivity limit of its Rx; Rx operates with large safety margin from damage threshold

PX40 class ONUs with PX40 class OLT

- Downstream (1G)
 - Power budget: +4 1.0 (–30) = 33 dB
 - ODN loss: 5.5.2+20.81= 26.33 dB
 - Power budget margin: +6.67 dB
 - Conclusions: PX40 ONU receive optical signal within sensitivity limit of their Rx
- Upstream (1G)
 - Power budget: +2 1 (– 32) = 33 dB
 - ODN loss: 8.36+20.81 = 29.17 dB
 - Maximum power level at OLT Rx: +7 1 29.17 = 23.17 dBm
 - Power budget margin: 3.83 dB
 - Damage threshold of OLT Rx: -3dBm >> -23.17 dBm (observed max)
 - Conclusions: PX40 OLT PMD receives optical signal within sensitivity limit of its Rx; Rx operates with large safety margin from damage threshold

Conclusions

- Multiple combinations of PMDs (existing and proposed) can coexist on the same OLT port, as long as the OLT port is upgraded to support the highest power budget available.
- Through simple numeric calculations we show that there are no problems with overload on the ONU and OLT receivers and they operate within their optimum sensitivity range.
- The examined scenarios of coexistence between different PMD classes allow operators to use the grow-as-needed approach, in which they start from lower-loss ODN and then gradually expand selected drop sections, adding 1:2 or 1:4 splitters to add more ONUs to the network.
- Addition of PX30, PX40, PR40 and PRX40 power budgets will further enable operators to extend the coverage of already deployed networks, adding 1:2 extra split where needed, or build new networks with longer reach / higher split support.

Thanks!

