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Background & Objectives
• In May 2014 Interim was demonstrated the necessity of high spectrally 

efficient coding schemes to approach the POF channel capacity and 
therefore to meet the link budget requirements (see [1] and [2])

• The analysis based on Information Theory suggested that the combination of 
high spectrally efficient coded Pulse Amplitude Modulation (PAM) with 
Tomlinson-Harashima Precoding (THP) is a feasible solution

• This presentation studies several coded modulation schemes providing a 
comparison between them in terms of coding gain and complexity
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Disclaimer
• This presentation concentrates on baseband time-domain modulation 

schemes, and specifically on coded M-PAM schemes, as it was done in [1].

• Other schemes, like ones operating in frequency domain (e.g. DMT, OFDM, 
…) are intentionally left outside this presentation, since these kind of schemes 
incur, by their nature, in additional latency and implementation complexity.
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Reference model
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Information theory model
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Linear discrete-time channel model
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• x(k): channel input signal
• y(k): input affected by the channel impulse response HCH 

(convolution)
• w(k): white gaussian noise
• n(k): colored noise
• z(k): channel output signal, including ISI and additive 

colored noise
• It is assumed the timing-recovery is optimal, therefore it 

works providing optimal sampling phase to ADC

Discrete-time equivalent
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Equalized channel model
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Channel model - general considerations
• In order to make a fair comparison of coded modulation schemes, a channel 

model has to be defined

• Channel model is defined at the output of equalizer, under following 
assumptions:
• ISI has been fully compensated by the THP plus feed-forward equalizer
• Feed-forward equalizer fully whitens the channel noise
• The equivalent channel is a memoryless channel with additive white gaussian noise ➤ 

AWGN channel
• Therefore, it is assumed neither residual ISI nor colored noise exist

• Modulo operation may be advantageously embedded into the M-PAM decoder 
to avoid symbol flipping

• The THP power capacity losses due to crest-factor and precoding loss (see 
[1]) are included in the SNR of equivalent memoryless AWGN channel

• The THP coding penalty due to constellation expansion and modulo operation 
is going to be considered independently in the evaluation of each coded 
modulation scheme
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General considerations for the spectral efficiency 
selection
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Spectral efficiency selection
• The Shannon capacity analysis of [1] suggests the optimal scheme should be 

a M-PAM with M between 8 and 16, for THP channel and code-rate ~0.83
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Spectral efficiency selection
• The question: what choice is better, 8 or 16 PAM?

• The right answer depends on many implementation aspects:
1.Equalization complexity ➤ DSP complexity
2.Power consumption
3.Optoelectronics design limits
4.Harmonic distortion of light emitter
5.DAC and ADC implementation complexity

13
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Spectral efficiency selection
• Equalization complexity - numerical precision

• Ultimate Shannon limit for M = 16, cr ~0.83, is 19.9 dB
• Ultimate Shannon limit for M = 8, cr ~0.83, is 14.9 dB
• Based on this small difference (less than 1 quantization bit), equalizers for M = 8 and M 

= 16 are going to require very similar numerical precision

• Equalization complexity - number of MACs
• Symbol rate for M = 16 is FS = ~300 MHz
• Symbol rate for M = 8 is FS = ~400 MHz
• The number of taps NB and NF, of B(z) and F(z), respectively are proportional to the 

symbol rate
• Based on that, the number of MACs for M = 8 is 34% higher than for M = 16.

• Equalization complexity - number of MAC operations per time
• Based on previous point, the MACs / time is proportional to Fs2

• Therefore, the equalization (DSP) complexity for M = 8 is 78% higher than for M = 16.

• Power consumption due to DSP is also 78% higher for M = 8 than for M = 16.
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Spectral efficiency selection
• Optoelectronics design limits - TIA:

• According to [3], the maximum trans-impedance provided by a TIA depends on the 
required bandwidth, and hence on the symbol rate

• For a PIN diode with capacitance CT, and a gain-bandwidth product GBW provided by 
the technology, the maximum achievable trans-impedance is given by 

• Therefore, max. RF for M = 8 is around 1/2 of max. RF that is possible with M = 16
• This may impose additional gain stages for M = 8 compared to M = 16 to get the right 

signal levels in the ADC input

•  Optoelectronics design limits - PIN photodiode:
• Typically, as larger is the PD, smaller is the bandwidth to keep as low as possible the 

capacitance
• Therefore, smaller symbol rate could take advantage of larger photodiodes in order to 

reduce optical coupling losses, which may improve link budget
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Spectral efficiency selection
• Capacity penalties due to harmonic distortion of light emitter

• According to [4], the capacity penalties due to non-linear distortion is < 1 dB for SNRe < 
30 dB

• Both, M = 8  and M = 16, are going to incur in similar penalties, therefore no difference

• DAC and ADC complexity
• Resolutions required for M = 8 and M = 16 are very similar (< 1 bit difference), however 

let assume M = 8 requires 1 bit less than 16
• Power consumption for M = 8 is 50% of M = 16 for equal sampling frequency
• Because the power consumption can be considered proportional to sampling frequency, 

the final advantage of M = 8 respect to M = 16 is calculated 34%
• Advantage in ADC and DAC of M = 8 does not compensate the DSP power 

consumption disadvantage  
• On the other hand, it is not exactly true the area of DAC/ADC for M = 8 @ 400 MHz is 

going to be 50% of M = 16 @ 300 MHz, since they operates at quite different 
frequencies; the advantage would be less than 20 % in real implementations

• Based on previous criteria, it seems that M = 16 is the winner choice

16
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Shannon limit and spectral efficiency review
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Normalized SNR concept
• Shannon showed that for an AWGN channel with signal to noise ratio SNR 

and bandwidth B (Hz), the data rate R (bits/s) of a reliable (arbitrary low error 
rate) transmission is upper bounded according to:

• Equivalently, Shannon’s result shows that spectral efficiency (bits/s/Hz) is 
upper bounded by:

• Reformulating the equation, the SNR needed for reliable transmission with 
spectral efficiency η is lower bounded by:

• These bounds suggest that we can define a normalized SNR as: 

• Then, for any reliable coding scheme, the ultimate Shannon limit is SNRn = 1 
(0dB); therefore, SNRn measures the gap to capacity 

18

R < B log2 1+ SNR( )

η < log2 1+ SNR( )

SNR > 2η −1

 
SNRn !

SNR
2η −1



IEEE 802.3 GEPOF Study Group - July 2014 Plenary

PO
F

Knowledge Development 

Spectral efficiency review
• As example, let consider PAM16 scheme prepended by a binary FEC with a 

code-rate cr = 0.83; the following definitions are equivalent:
• Spectral efficiency = 2·log2(16)·0.83 = 6.64 bits/s/Hz
• Spectral efficiency = 3.32 bits/s/Hz/dim
• Spectral efficiency = 3.32 bits/Symb, since the number of dimensions for each PAM 

symbol is 1

• Let consider symbol rate FS = 312.5 MSymb/s, then:
• Bandwidth B = 156.25 MHz
• Data-rate DR = B·η = 156.25 MHz x 6.64 bits/s/Hz = 1037.5 Mbps
• Data-rate DR = FS·η = 312.5 MSymb/s x 3.32 bits/Symb =  1037.5 Mbps

• Ultimate Shannon limit = 10·log10(26.64 - 1) = 19.94 dB
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Achievable capacity of u.d. M-PAM in AWGN

21

• We must be aware that high spectrally efficient uniformly distributed M-PAM 
schemes, by their nature, operates with a gap to Shannon

• The experienced capacity loss in AWGN is due to the statistical distribution of 
PAM levels is not gaussian

• However, under non-negative optical power constraint, the optical channel 
input is limited in power peak, instead of average power

• Therefore, any constellation shaping intended to make more gaussian the 
input signal to channel, is going to produce crest-factor increase, reducing 
the variance of input signal to channel, then reducing the capacity
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Achievable capacity of u.d. M-PAM in THP
• THP produces additional capacity penalty due to modulo loss and detection over an 

infinite lattice, which is specially relevant for low spectral efficiencies

• This was already evaluated in [1] as THP coding loss vs. ideal DFE

• Therefore, let us consider the previous example for illustration of the true capacity limit
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Coded modulation schemes
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FEC schemes: general considerations
• Neither impulse noise nor RFI noise are considered, since it is an optical communication 

system

• Only algebraic codes like Reed-Solomon and BCH are considered

• Equal code-word lengths and similar code-rates are considered for fair comparison of 
several FEC schemes

• Only hard-decoding is considered, because:
• Soft-decoding algorithms applied to algebraic codes are prone to error floor
• Soft-decoding algorithms applied to algebraic codes are prohibitive in terms of implementation 

complexity, 
• Soft-decoding only provides about 0.6 dB additional coding gain vs. hard-decoding

• Target BER < 10-12, therefore any error floor should be below it

• LDPC codes are left outside the scope, because their high design and encoding/decoding 
complexities
• Silicon area of LDPC > 10x silicon area of BCH with similar code-rate, codeword length, bit-rate and 

system clock frequency (2k codes considered)
• LDPC design is a hard task, requiring dedicated HW for very long simulations to get a design free of 

error floor and trapping-sets
• Error floor and coding gain is always dependent on the soft-decoding implementation (BPA 

approximation algorithms, numerical precision of message passing, scheduling, # of iterations, etc) 

25
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FEC #1: scheme

26

RS encoder
(252, 210)

nEQ(k)

THP
Constellation 

expansion
16-PAM 
MEDD mod-Λp

RS decoder
(252, 210)

16-PAM 
Gray Mapper

• Minimum Euclidian Distance Detector (MEDD) is considered, which is equivalent to optimal 
MAP and ML criteria, since PAM levels are equiprobable and it is a memoryless AWGN channel

• MEDD operates over the infinite lattice to wich constellation belongs, therefore no symbol 
flipping happens

• Congruent modulo reduction for THP lattice is performed after detector

• Gray mapper ➤ single symbol error produces a single bit error

• Reed-Solomon (252, 210) over GF(2m) with m = 8 and t = 21
• Code-word length = 2016 bits
• cr = 0.8333
• Spectral efficiency = 3.33333 bits/s/Hz/dim
• Encoder complexity is negligible ➤ simple shift register
• Decoder complexity is proportional to 2·m·t, assuming Berlekamp-Massey Algorithm (BMA)
• Complexity figure of merit = 2·m·t·BR/cr = 2·8·21·1000/0.8333 = 403200

16-PAM 
De-mapper
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FEC #1: performance
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FEC #2: scheme
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• BCH (2016, 1675) over GF(2m) with m = 11 and t = 31
• cr = 0.83085
• Spectral efficiency = 3.32341 bits/s/Hz/dim 
• Encoder complexity is negligible ➤ simple shift register
• Decoder complexity is proportional to m·t, assuming Berlekamp-Massey Algorithm 

(BMA)
• Complexity figure of merit = m·t·BR/cr = 410421

• BCH codes are more efficient than RS codes in AWGN and assuming gray 
mapping, since errors affect to single bits, and all the correction capability of 
RS able to correct groups of m bits is underutilized
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FEC #2: performance
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BCH(2016, 1675, 31) m = 11
Spect. Eff.: 3.32341 b/s/Hz/dim
Shannon gap (BER = 1e-12):        7.05 dB
Capacity bound gap (BER = 1e-12): 5.69 dB
SNR (BER = 1e-12):                27 dB
Coding gain (BER = 1e-12):        5.04 dB
Uncoded reference (BER = 1e-12):  12.09 dB
Input SER (BER = 1e-12):          0.0154889
Input BER (BER = 1e-12):          0.00387223
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FEC #3: scheme
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• BCH (2016, 1917) over GF(2m) with m = 11 and t = 9
• cr = 0.9509
• Spectra efficiency = 3.328125 bits/s/Hz/dim
• Complexity figure of merit = BR/cr·m·t = 99 = 104112 ➤ 75% complexity reduction

• The complexity of binary code is reduced because 2 dimensions lattice is 
used for constellation, which provide 3.5 bits/dim

• 2D mapper, detector, modulo and de-mapper are trivial in terms of 
computational complexity

• Only an small coding gain penalty ~0.15 dB
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FEC #3: scheme - RZ2 mapper
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FEC #3: performance
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Spect. Eff.: 3.32812 b/s/Hz/dim
Shannon gap (BER = 1e-12):        7.19 dB
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SNR (BER = 1e-12):                27.2 dB
Coding gain (BER = 1e-12):        5.02 dB
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Input SER (BER = 1e-12):          0.000958185
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FEC #4: scheme
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• Multilevel Coset Coding (MLCC) of 3 levels based on Z2 and RZ2 lattices to adjust accurately the 
spectral efficiency with low complexity binary component codes

• The constellation is partitioned in such a way the bits more likely to be corrupted by noise are 
protected by stronger component code (more parity), and those bits less corrupted are indeed no 
protected

• Based on [5]

• Theory behind this code is similar to that used for 10GBASE-T FEC. 
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FEC #4: scheme - coset partitioning
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FEC #4: scheme - coset partitioning
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• Basic numbers of constellation:
• 128 points in a 2D constellation
• log2(128) = 7 bits / 2D symbol
• 7 bits = 

• 2 bits of 1st MLCC level
• 2 bits of 2nd MLCC level
• 3 bits of 3rd MLCC level

• Each 2D symbol transmitted at a rate of Fs/
2

• To transmit over 1D (i.e. intensity modulation 
of LED), the system does time interleaving 
of both coordinates of 2D constellation at 
double rate, that is Fs

• Each 2D point can be represented by 2 
coordinates that can take 16 different values 
each one: {-15, -13, … 13, 15} ➤ 16-PAM

• This is 16-PAM, but encoding by 3.5 bits/1D 
symbol (i.e. 7bits/2D) instead of 4 bits as 
usual, since the 1D constellation was 
generated from odd bits 2D constellation.

• 3.3145 bits of 3.5 are information bits, the 
rest is parity for error correction

(1664+1994)/2016 + 1.5 = 
3.3145 bits/s/Hz/dim
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FEC #4: scheme - Multi-Stage Decoding
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FEC #4: scheme - Intuitive point of view - 1st level
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d

2·d

• The 2 bits mapped to 1st level 
encode 4 co-sets, that is, they 
divide the constellation into 4 sets 
of points:
• ☐, △, ❊, and ⃝

• The MSD has to decide in the 1st 
stage for each received symbol to 
which co-set belongs

• Minimum distance of 1st level 
constellation is the minimum one, 
i.e. d, so we need the most 
powerful component code for this 
level

• Let’s assume, for instance, the 1st 
level decided (after 1st BCH 
decoding) that the received symbol 
belongs to the coset of squares
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FEC #4: scheme - Intuitive point of view - 2nd level
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• The 2nd stage of MSD has to 
decide between magenta, green, 
blue and red squares.

• The 4 “colors” are encoded by the 
2 bits assigned to 2nd level of 
MLCC encoder, which are mapped 
in another QPSK constellation.

• The variance of noise affecting to 
2nd stage is the same, but the min 
distance of constellation is 2·d, the 
probability of error is much smaller 
than in the 1st level, therefore the 
component code can be lighter 
(less protection).

• Let’s assume the 2nd level decide 
that the received symbol belongs 
to the coset of red squares

2·d

4·d
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• The 3rd stage of MSD has to 
decide one of the red squares.

• The red squares are directly 
encoded by the 3rd level of MLCC

• The SNR has been increased 12 
dB compared to 1st level, 
therefore, the probability of symbol 
error is very low for the operating 
point, and not coding is required 
for good operation (BER < 10-12)

• And … that’s all:
• The information bits more affected by 

noise are more protected when the 
coded modulation is performed in 
transmission

• Binary component codes, mapping 
and constellations are designed all 
together also considering the THP 
and MSD 

FEC #4: scheme - Intuitive point of view - 3rd level

4·d
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FEC #4: performance
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Channel: THP
Level 1: BCH(2016, 1664, 33) m = 11
Level 2: BCH(2016, 1994, 2) m = 11
Spect. Eff.: 3.31448 b/s/Hz/dim
Shannon gap (BER = 1e-12):        5.47 dB
Capacity bound gap (BER = 1e-12): 4.12 dB
SNR (BER = 1e-12):                25.38 dB
Uncoded gap (BER = 1e-12):        12.2 dB
Coding gain (BER = 1e-12):        6.74 dB
Input SER (BER = 1e-12):          0.00914449
Input BER (BER = 1e-12):          0.00200308
Input BER MLC level 1 (BER = 1e-12):  0.00457225
Input BER MLC level 2 (BER = 1e-12):  1.41571e-08
Input BER MLC level 3 (BER = 1e-12):  8.92866e-30
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FEC #4: performance
• Advantages:

• Improved coding gain: by using simple algebraic codes we get improvement of ~1.7 dB 
with small complexity impact (lattice transformations, 2D mappers, etc are very simple 
to implement)

• More efficient in terms of computational complexity: the BCH of 1st level run at ~30% of 
the full information bit rate, i.e. decoding operates at ~300 Mbps

• m(1)·t(1)·BR/3.5/cr(1) + m(2)·t(2)·BR/3.5/cr(2) = 132008 ➤ 68% complexity reduction
• Silicon area of FEC#4 (encoder+decoder) < 17% of the silicon area required for 1Gbps 

LDPC (2048, 1723) based on shortened RS codes with 2 information symbols  

• Disadvantages:
• Latency: the multistage decoding incurs in additional latency, since the decoded 

information of 1st level has to be available to begin 2nd level decoding, and the decoded 
information of 2nd level to begin 3rd level detection and de-mapping
• As Shannon already advanced, the channel capacity can only be approached with an infinite length 

code word, therefore, higher coding gain implies higher latency

41
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Conclusions
• In May 2014 Interim was demonstrated the necessity of high spectrally 

efficient coding schemes and THP equalization to approach the POF channel 
capacity and therefore to meet the link budget requirements presented in [2]

• TH precoded communication channel model and capacity bounds have been 
explained and calculated

• Spectral efficiency has been selected and argued

• Several FEC schemes able to operate in THP channel providing the selected 
spectral efficiency have been proposed and compared

• FEC schemes have been compared in terms of coding gain and 
computational complexity, resulting the most powerful solution a FEC based 
on Multilevel Coset Coding, which provides the maximum coding-gain with 
minimum computational complexity

42
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