Thoughts on 802.3 Asymmetric Rates

IEEE 802.3

MultiGigabit Automotive Ethernet PHY Study Group Ad Hoc

> George Zimmerman CME Consulting, Inc. 7 February 2017

Asymmetry is a Systems Issue

- Dynamic Asymmetry of rates:
 - Capable of varying degrees of asymmetry (including symmetric) operation
 - Flexible for varying demands and use cases
 - May or may not go above the PHY layer
 - Variation may be engineered into PHY silicon
- Fixed Asymmetry of rates
 - Fixed at system design time
 - Locked in to traffic assumptions and use cases
 - May be engineered into PHY and MAC silicon
- This is not about "full duplex" or "half duplex"

Full Duplex vs. Half Duplex

- See Clause 4 (the MAC):
 - "In half duplex mode, stations contend for the use of the physical medium, using the CSMA/CD algorithms specified. Bidirectional communication is accomplished by rapid exchange of frames, rather than full duplex operation."
 - "The full duplex mode of operation can be used when all of the following are true:
 1) The physical medium is capable of supporting simultaneous transmission and reception without interference (e.g., 10BASE-T, 10BASE-FL, and 100BASE-TX/FX).

2) There are exactly two stations on the LAN. This allows the physical medium to be treated as a full duplex point-to-point link between the stations. Since there is no contention for use of a shared medium, the multiple access (i.e., CSMA/CD) algorithms are unnecessary.

3) Both stations on the LAN are capable of and have been configured to use full duplex operation."

- Has variable throughput and network-level considerations
 - No MACs at rates greater than 1Gbps support half duplex
- Requires planning of link segment propagation delay and packet length
- Does NOT require the rate is the same it is about contention for use of the media

Examples of Dynamic Asymmetry in 802.3

- EEE low power idle (Clause 78, see 78.1.1)
 - Defined for many PHYs, including BASE-Ts and 1000BASE-T1, but not 100BASE-T1
 - Includes signaling at the MAC interface for systems-level power savings
- PHY-only rate adaptation with MAC-PHY rate matching (Clause 61.2.1)
 - Defined for 10PASS-TS and 2PASS-TL Ethernet in the First Mile PHYs
 - Rates subject to spectral planning, interference, loop conditions, etc.
 - PHY-only rate changes, MAC runs at full rate (100Mb/s in Clause 61)
- Half duplex transmission
 - Only one side transmits at a time, based on traffic
 - Media contention/delay planning gets harder as rate increases
 - This relationship broke at Gigabit Ethernet
 - 2.5G/5G/10G/25G/40G/100G Ethernet are defined for full duplex only
 - (Clauses 44, 105, 125)
 - NO MACs (switches) at these rates support half duplex!

EEE Basics

Source: EEE Overview, M. Bennett, http://www.ieee802.org/3/100GCU/public/mar11/bennett_01_0311.pdf

- Like normal IDLE signaling in Ethernet, control of LPI mode is asymmetrical
- Packets may be buffered and burst transmitted over the link in either direction

Examples of Fixed Asymmetry in 802.3

- Modes of 10PASS-TS (ADSL)
 - Fixed asymmetry in the phy, dynamic variation
- Various EPON PHYs
 - 10G/1G EPON: 10Gb/s downstream, 1Gb/s upstream, CI 75
 - 10PASS-XR (802.3br): up to 10Gb/s down, 1.6Gb/s up, CI 100
 - NG EPON (in development)
- EPON is different from most Ethernet
 - A dual MAC-interface model
 - Extensions to Reconciliation Sublayer, PHYs for unidirectional transport (CI 66)
 - Point to Multipoint protocols
 - Need to be careful that our solution works in the point-to-point context
 - Also allows dynamic bandwidth allocation on request
 - See http://www.ieee802.org/3/10SPE/public/adhoc/Multiaccess in Ethernet Passive
 Optical Networks.pdf for detail on EPON P2MP protocols

EPON dual MAC Interface Model

Changing data rate in PHYs (easy)

- Scale the duty cycle of the transmission
 - EEE and half duplex transmission do this dynamically
 - Power savings related to what circuitry can be shut down
- Scale the symbol rate (baud) to use more/less frequency
 - 2.5G/5GBASE-T and 25G/40GBASE-T do this
 - Same PCS & PMA signaling, at different speed
 - Enables savings on the link segment (cabling) parameters (lower bandwidth in the cabling)
 - Saves analog & digital power in the PHY design
 - Saves area through parallelization/bandwidth and architecture
- Scale the modulation/information density using same frequency span
 - For example, 100BASE-TX to 1000BASE-T to 2.5GBASE-T
 - PAM-3 to PAM-5 to PAM-16
 - 100M -> 250M -> 390.625 M bps/pair at 125Mbaud or equivalent (625 Mbps @ 200 Mbaud for 2.5G)
 - Different PCS & PMA signaling, at same or different speeds
 - Minimal savings on link segment (cabling)
 - Saves some power (mostly digital) in PHY design, depends on architecture
 - Saves area (mostly digital) in PHY design

Asymmetry in implementation (1)

- Half duplex
 - Pros:
 - Already defined
 - No need for echo-cancelled receiver signal processing
 - Cons:
 - Not defined in IEEE 802.3 at greater than 1 Gb/s
 - Variable network throughput
- Asymmetric EEE
 - Pros:
 - Already defined
 - Power savings PHY circuitry shut down when not in use
 - Systems power savings MAC, switch and other circuitry know to sleep too
 - Flexibility can burst to full rate when needed
 - Network and PHY proven can leverage experience and work
 - Could be used with asymmetric transmission, but not defined
 - Cons:
 - Wakeup delay limits savings when traffic gets close to symmetry
 - If low latency wakeup is needed, analog savings may suffer
 - · Clock stability may be an issue if fast wakeup is desired after long periods of inactivity

Asymmetry in implementation (2)

- Fixed-asymmetry PHY implementations
 - Pros:
 - Transmit and receive circuitry optimized for rate
 - Power savings in the PHY
 - Potential for silicon area savings at the PHY
 - » Not guaranteed depends on the relationships of clocks, bandwidths, etc.
 - Cons:
 - Twice as hard to define the PHY (need to design 2 PHYs)
 - Multiple PHY types (can be avoided by dropping savings)
 - MAC level complexity
 - No direct system level savings
 - MAC/system level power savings reduced
 - Circuits are more often active than in the "EEE buffer and burst" mode

Conclusion

- No need for an 'asymmetric' objective at this time
 - Unless it effects the MAC interface, but nonstandard rates would be out of scope
- Stick with full duplex operation

– Don't break > 1Gbps Ethernet!

- Asymmetric rates can be handled by mechanisms like EEE or PHY modifications, already in the objectives
 - Additional PHY optimization can be done in Task Force
 - Many ways to do this
- Consider systems-level implications

Thank You!