# Transmit Power Back-off (PBO) for 2.5G and 5G BASE-T

Hossein Sedarat Alireza Razavi

# AQUANTIA®

6/23/2015

# Why Power Back-off is Needed

- Transmit power back-off (PBO) is a mechanism to alleviate the effect of alien crosstalk
- Alien crosstalk is stronger when a remote aggressor is on a shorter cable and closer to a victim
- PBO reduces the transmit power on short cables so that the crosstalk to adjacent links is reduced



# Alien Crosstalk in BASE-T Systems

- Alien crosstalk is stronger when
  - Signaling bandwidth is wider
  - Coupling between cables is stronger
- Alien crosstalk is considered negligible in 1000BASE-T due to low bandwidth and low SNR requirements
  - Annex 40A defines a limit on ANEXT for 1000BASE-T systems
- 10GBASE-T is very sensitive to alien crosstalk because of its wider bandwidth. Coping mechanisms:
  - Use of Cat6a with lower coupling factor
  - PBO
- Alien crosstalk is an important noise source in 2.5G and more so in 5GBASE-T because
  - Cat5e/Cat6 cables have higher coupling factor
  - Signaling bandwidth is fairly wide

#### Alien Crosstalk PSD in 10GBASE-T



- ANEXT power is mostly independent of cable length
- AFEXT varies with insertion loss and coupling length

### **PBO in 10GBASE-T**

- Alien crosstalk may be equalized across cable lengths with proper back-off of transmit power on shorter cables
- 10GBASE-T allows up to 14 dB of PBO in steps of 2 dB



### **PBO Selection Criterion in 10G**

- Reduce the transmit power on shorter cables
  - so that the crosstalk on longer victim is minimized
  - while the SNR on shorter cables is no sacrificed too much
- SNR should remain above a target for any combination of victim and aggressors cable lengths



## **PBO Considerations in 5G/2.5G**

 There is no limit-line or model for alien crosstalk of Cat5e and Cat6 cables

- Usage model for 5G/2.5G allows mixture of victim and aggressors with potentially different rates and PSDs
- Aggressors and victim can be any combination of the following rates:
  - 1000BASE-T: BW=62.5 MHz, no PBO
  - 2.5GBASE-T: BW=100 MHz
  - 5GBASE-T: BW=200 MHz

### Alien Crosstalk Models for Cat6/5e

• For this analysis, Cat6a models are extended with an additional constant offset

$$ANEXT_{PS} = \begin{cases} X_n - 10 \times \log(f/100) - X_o & f < 100 \text{ MHz} \\ X_n - 15 \times \log(f/100) - X_o & f \ge 100 \text{ MHz} \end{cases}$$

 $AELFEXT_{PS} = X_f - 20 \times log(f/100) - 10 \times log(L/100) - X_o$ 

- $X_f$  and  $X_n$  are alien crosstalk loss of Cat6a at 100 MHz
- X<sub>o</sub> is the offset of Cat6/5e from Cat6a
  - An offset of  $X_o \approx 15 \text{ dB}$  is used as the starting point
  - Do we need different offset for ANEXT and AFEXT?

#### **Alien Crosstalk PSD for Various Rates**



# **SNR Analysis**

- Cable: Cat5e with alien crosstalk offset of 15 dB
- Transmit power:
  - 5G/2.5G: 2 dBm
  - 1G: 3.5 dBm (no spec, based on modeling and measurement)
- Bandwidth
  - 5G: 200 MHz
  - 2.5G: 100 MHz
  - 1G: 62.5 MHz
- Background thermal noise: -150 dBm/Hz
  - Implementation-depended noise sources are not included
- Mixed aggressor model: each of 6 aggressors contributes 1/6 to the total crosstalk power

#### Salz SNR: 5G/2.5G over 100m – No PBO



#### Salz SNR: 1G over 100m



1000BASE-T is immune to 5G and 2.5G aggressors!

# **SNR, PBO and Crosstalk Offset**

- Increasing the transmit power of the victim increases the SNR of the victim
- Increasing the transmit power of the aggressors reduces the SNR of the victim
- Increasing the alien crosstalk offset reduces the SNR of the victim

# **PBO Selection Algorithm**

- Find the PBO and the alien crosstalk offset for each length and rate such that:
  - SNR of both victim and aggressors always remain above the target level
  - Crosstalk offset is maximized (*i.e.* widest support of cable plants in the field)
  - Maximum transmit power remains below a limit
- Other considerations:
  - Transmit power in 1G is fixed
  - Mixture of various aggressor rates

### **Optimal PBO and Crosstalk Offset**



#### Minimum SNR Victim: 100m Cat5e , Aggressors: Mixed



### **PBO: 2 dB Steps**



### **PBO Table**

| 5G                     |                     |             |  |  |  |  |
|------------------------|---------------------|-------------|--|--|--|--|
| Receive Power<br>(dBm) | Cable Length<br>(m) | PBO<br>(dB) |  |  |  |  |
| $-5.8 \le P$           | $L \leq 35$         | 8           |  |  |  |  |
| $-7.0 \le P < -5.8$    | $35 < L \le 45$     | 6           |  |  |  |  |
| $-9.2 \le P < -7.0$    | $45 < L \le 65$     | 4           |  |  |  |  |
| $-11 \le P < -9.2$     | $65 < L \le 85$     | 2           |  |  |  |  |
| P < -11                | 85 < L              | 0           |  |  |  |  |

| 2.5G                   |                     |             |  |  |  |
|------------------------|---------------------|-------------|--|--|--|
| Receive Power<br>(dBm) | Cable Length<br>(m) | PBO<br>(dB) |  |  |  |
| $-4.3 \le P$           | $L \le 45$          | 2           |  |  |  |
| P < -4.3               | 45 <i>&lt; L</i>    | 0           |  |  |  |



# Summary

- 5G:
  - PBO is necessary
  - A maximum of 8 dB back-off is sufficient
  - Supported alien crosstalk offset from 11 dB on long cables to more than 18 dB on short cables
- 2.5G
  - PBO is beneficial particularly for 5G operation
  - A maximum of 2 dB back-off is sufficient
  - Supported range for alien crosstalk offset is from 18 to 26 dB
- 1G is insensitive to alien crosstalk from 2.5G and 5G transceivers





### **PBO in 10GBASE-T**

The PBO is specified based on received power

| Power backoff schedule in 10GBASE-T |    |    |    |    |    |     |  |  |
|-------------------------------------|----|----|----|----|----|-----|--|--|
| Cable Length<br>(m)                 | 35 | 45 | 55 | 65 | 75 | 100 |  |  |
| Power Backoff<br>(dB)               | 10 | 8  | 6  | 4  | 2  | 0   |  |  |

• The power number in the PBO table for 10GBASE-T seems to be wrong!