# 2.5/5GBASE-T Feasibility



### Tom Souvignier German Feyh

February 24<sup>th</sup>, 2015

#### 2

## **10GBASE-T Market – Significant Growth**

- 10GBase-T market doubled in 2014 (from 2013)
- Expected to grow to >40M by 2019
- 1/3 of all ports will be shipped for the enterprise by 2019



#### **10GBase-T Forecast ('000 Ports)**

Source: Dell'Oro Feb'15



## **10GBASE-T Standard**



- Hockey stick growth in Enterprise & Data Center environments
- 10GBASE-T operates successfully in Enterprise & Data Center environments
- Use and knowledge of 10GBASE-T is widely disseminated:
  - 10GBASE-T standard was approved in June 2006.
  - Three generations in the field: 65nm, 40nm and 28nm.
  - Multi-vendor interoperability well established.
- Due to 10GBASE-T's success, an amendment to IEEE Std 802.3 (802.3bq) is under way for:
  - 25G
  - 40G
- Extending the 10GBASE-T standard is the fastest and safest path to the next generation 2.5G / 5G standard.

## **10GBASE-T Modulation and Coding**



- DSQ-128 and (2048,1723) LDPC
  - 10GBASE-T is a performance optimized transmission standard less than 2.5dB from Shannon capacity



## **10GBASE-T Layering**





MDI – MEDIUM DEPENDENT INTERFACE XGMII – X GIGABIT MEDIA INDEPENDENT INTERFACE PCS – PHYSICAL CODING SUBLAYER

PMA - PHYSICAL MEDIUM ATTACHMENT PHY - PHYSICAL LAYER DEVICE

"XGMII is optional.

Figure xx-1-Type 2.5/5GBASE-T PHY relationship to the ISO Open Systems Interconnection (OSI) reference model and the IEEE 802.3 CSMA/CD LAN model

## **Frequency-scaled 10GBASE-T Full Duplex Baseband Transmission**





Figure xx-2--2.5/5GBASE-T topology

## 2.5/5GBASE-T Technical Approach



- Scale frequencies:
  - $-\frac{1}{2}$  for 5G
  - ¼ for 2.5G
- Use industry-wide 10GBASE-T compatible start-up sequence.
- Preserve industry accepted implementation delay.
- Reuse TX specifications with 3dB (5G) and 6dB (2.5G) higher TX-PSD:
  - Additional protection against cross-talk
  - Maintains EMC characteristics

## 2.5/5GBASE-T Technical Approach (cont.)

| BROA | БСОМ. |
|------|-------|

- DSQ-128 signaling on four twisted pairs.
  - 3.125bits per symbol needed for
    - 200MBd for 2.5G
    - 400MBd for 5G
  - 3.5bits per symbol
  - Guarantees sufficient SNR for the timing loop by avoiding false decisions
  - Efficient 12dB constellation partitioning
- Near Shannon capacity (2048/1723) LDPC code
- For 10GBASE-T, this approach was extensively analyzed in the 802.3 standards committee and found to provide the best performance over competing proposals

## 2.5/5G Deployment Configurations





From C. DiMinico: NGEABT Use Case Ad Hoc

## **Error-free Test Results**



### Cat5e / Cat6 Channel



| Rate | Cable type | Configuration      | Aggressor<br>rate | Aggressors<br>length (m) | Victim<br>length (m) |
|------|------------|--------------------|-------------------|--------------------------|----------------------|
| 2.5G | Cat5e      | 6-a-1 (4 segments) | 2.5G              | 100                      | ≥100                 |
| 5G   | Cat5e      | 6-a-1 (4 segments) | 1G                | 100                      | ≥100                 |
| 5G   | Cat6       | 6-a-1 (4 segments) | 5G                | 100                      | ≥100                 |

## 2.5/5GBASE-T Summary



- Leverages proven 10GBASE-T Technology
  - Robust DSQ-128 Modulation
  - High-performance LDPC coding
- Provides excellent performance
  - Error-free over 100m of Cat5e & Cat6 at 2.5Gb/s & 5Gb/s
  - Robust against alien and impulsive noise sources
- Straightforward implementation
  - Re-use of 10GBASE-T blocks accelerates multi-vendor implementation
  - Minimal hardware changes
- Supports fast-track standardization
  - Leverages successful 10GBASE-T standardization
  - Enables direct path to IEEE standardization