802.3bz 2.5G/5GBASE-T TF

PCS/PMA Proposal

Tom Souvignier German Feyh

Architecture Ad Hoc April 28, 2015

PCS/PMA Layering

2.5G and 5G BASE-T Layering considerations

10GBASE-T Market – Significant Growth

- 10GBase-T market doubled in 2014 (from 2013)
- Expected to grow to >40M by 2019
- 1/3 of all ports will be shipped for the enterprise by 2019

Source: Dell'Oro Feb'15

10GBASE-T Standard

- Hockey stick growth in Enterprise & Data Center environments
- 10GBASE-T operates successfully in Enterprise & Data Center environments
- Use and knowledge of 10GBASE-T is widely disseminated:
 - 10GBASE-T standard was approved in June 2006.
 - Three generations in the field: 65nm, 40nm and 28nm.
 - Multi-vendor interoperability well established.
- Due to 10GBASE-T's success, an amendment to IEEE Std 802.3 (802.3bq) is under way for:
 - 25G
 - 40G
- Scaling the 10GBASE-T standard is a fast and sure path to a 2.5/5GBASE-T standard.

10GBASE-T Modulation and Coding

- DSQ-128 and (2048,1723) LDPC
 - 10GBASE-T is a performance optimized transmission standard less than 2.5dB from Shannon capacity

Frequency-scaled 10GBASE-T Full Duplex Baseband Transmission

Figure xx-2--2.5/5GBASE-T topology

Frequency-scaled 10GBASE-T Full Duplex Baseband Transmission

Proposed 2.5/5GBASE-T Technical Approach (1)

- Scale frequencies:
 - $-\frac{1}{2}$ for 5G
 - 1/4 for 2.5G
- Use industry-wide 10GBASE-T compatible start-up sequence.
- Preserve industry accepted implementation delay.
- Reuse TX specifications with 3dB (5G) and 6dB (2.5G) higher TX-PSD:
 - Additional protection against cross-talk
 - Maintains EMC characteristics

10Gb/s TX PSD Limit Lines

10G and 5G TX PSD Limit Lines

10G, 5G and 2.5G TX PSD Limit Lines

Limit lines frequency limited to 1GHz

Measured 10Gb/s TX PSD

Measured 10G and 5G TX PSD

Measured 10G, 5G and 2.5G TX PSD

0dB PBO PAM2 time-domain TX waveforms

Equalized RX Constellation

Proposed 2.5/5GBASE-T Technical Approach (2)

- DSQ-128 signaling on four twisted pairs.
 - 3.125bits per symbol needed for
 - 200MBd for 2.5G
 - 400MBd for 5G
 - 3.5bits per symbol
 - Guarantees sufficient SNR for the timing loop by avoiding false decisions
 - Efficient 12dB constellation partitioning
- Near Shannon capacity (2048/1723) LDPC code
- For 10GBASE-T, this approach was extensively analyzed in the 802.3 standards committee and found to provide the best performance, compared to all other alternative proposals.
- All bits are protected
 - Some bits protected by LDPC code
 - Remaining bits protected by Euclidean Distance

2.5/5GBASE-T PCS/PMA Proposal Summary

Leverage proven 10GBASE-T Technology

- Robust DSQ-128 Modulation
- High-performance LDPC coding

Provide excellent performance

- Error-free operation over 100m of Cat5e & Cat6 at 2.5Gb/s & 5Gb/s
- Robust against alien noise sources (24/7 problem)
- Robust against impulsive noise sources (infrequent)

Straightforward implementation

- Re-use of 10GBASE-T blocks accelerates multi-vendor implementation
- Minimal hardware changes

Support fast-track standardization

- Leverage successful 10GBASE-T standardization
- Enable direct path to IEEE standardization

Thank you!