1000BASE-T/10GBASE-T Time-To-Link and Some Implications for 2.5/5GBASE-T

IEEE P802.3bz 2.5G/5G BASE-T Task Force Architecture ad hoc

Pete Cibula, Intel

May 5th, 2015

Discussion Outline

- What is time-to-link, why is it important, and how can it be characterized?
- A few representative measurements
- Factors that influence time-to-link
- Observations and summary

What is Time-To-Link (TTL)?

- Time-To-Link (TTL): A system performance metric that characterizes and measures PHY behavior through autonegotiation and 1G/10G BASE-T startup sequences
 - Autonegotiation in 802.3 Clause 28, "Physical Layer link signaling for Auto-Negotiation on twisted pair"
 - 1Gb in 802.3 Clause 40, Subclause 40.4.2.4, "PHY Control function"
 - 10Gb in 802.3 Clause 55, Subclause 55.4.2.5.14, "Startup sequence"
- One of two primary performance measures (along with BER) used to characterize BASE-T physical layer link interoperability

Autonegotiation

Why is it Important?

- Server networking drivers must meet 3rd-party certifications
- Example Windows Hardware Quality Labs (WHQL) testing & certification "devfund"
 - A series of "device fundamentals" tests to evaluate the compatibility, reliability, performance, security and availability of a device in Windows OS
 - Includes many automated driver stress tests that execute multiple device resets
 - Long link times appear as a "failure" to these tests, which expect a link in 3s-4s based on 10Mb/100Mb/1Gb PHY performance

Server device fundamentals requirements

Test Applicability Matrix

Mapping of Tests to Various Operating Systems

Device Fundamentais Tests	Only If INF provided	Server 2003	χр	Vista	Windows 7	Server 2008 R2
Common Scenario Stress with IO	×	~	~	~	~	~
Sleep Stress With IO	×	~	~	~	~	~
Disable Enable With IO	×	~	~	~	~	~
Device Path Exerciser	~	~	~	~	~	~
Run INFTest against a single INF	~	~	~	~	~	~
Plug and Play Driver Test	~	~	~	~	~	~
Embedded Signature Verification	×	×	×	~	~	~
Reinstall With IO	×	×	×	~	~	~
CHAOS - Concurrent Hardware & OS	~	×	×	×	~	~
Device Install Checks (2 tests)	×	×	×	×	~	~
IO Cancellation Tests (2 tests)	×	×	×	×	~	~
WDFTester	×	×	×	~	~	~
Dynamic Partitioning	×	~	×	×	×	~
Multiple Processor Group	×	×	×	×	×	~
					Wind	OWS ⁻

• Long TTLs (>6s) can lead to device certification failures!

Link Interoperability Measurements

- Representative Link Interoperability metrics associated with TTL
 - Time-To-Link (Time to achieve link after link initiation event)
 - # Link Attempts (Number of attempts for each link)
 - # Link Drops (Number of link drops observed after link is established)
 - Clock Recovery (Master/Slave resolution)
 - TTL Distribution (% of links by link time)
 - Speed Downshift/Downgrade (Resolved speed if other than 10Gb/s)
- Variables that can affect TTL
 - Channel (type, configuration, length)
 - Link initiation event on either endpoint
 - Hardware reset, "soft" reset or MDIO PHY reset, autoneg restart, transmitter disable/enable, cable connect/disconnect

Characterizing Time-To-Link Behavior TTL as a Percentage of Total Trials

Total to remember: 1,550 link tests

- 1,050 out of 1,550 tests, or 68% of the total number of link tests, achieved a link state in 7s or less (green slice)
- 499 out of 1,550 tests, or 32% of the total number of link tests, achieved a link state somewhere between 7s and 15s (yellow slice)
- 1 out of 1,550 tests, or <1 % (actually 0.15%) of the total number of link tests, achieved a link state longer than 15s (actually 16.4s; can't see this in the pie chart)

Characterizing Time-To-Link Behavior Cumulative % TTL

Cumulative % TTL is the distribution of measured link times as a percentage of the total measured link time

Total to remember: Total link time recorded for all 1,550 tests = 10,837,835 ms or about 3h 0min 38sec

- 1,050 tests with TTL <= 7s had a total link time of 6,843,118 ms (63.14% of the total measured link time)
- 499 tests with 7s < TTL <= 15s had a total link time of 3,978,317 ms (40.24% of the total measured link time)
- 1 test with TTL >15s had a total link time of 16,400 ms (0.15% of the total measured link time)

Expressed as a cumulative percentage

- Measured link time < 7s: 63.14%
- Measured link time <15s: 99.85%
- Measured link time <16.4s (max): 100%

TTL bin	Total Time in TTL bin	Total Time All Tests	% Total Time	% Cum Time
<= 7s	6,843,118	10,837,835	63.14%	63.14%
7s < TTL <= 15s	3,978,317		36.71%	99.85%
> 15s	16.400		0.15%	100.00%

Example: TTL Distribution and Master/Slave Resolution by Channel Length

- Example of 10GBASE-T TTL measured from 2m to 115m channels (9,790 links)
 - Stacked plot order L-R is 2m to 115m
- TTL across 2m-100m
 - Average TTL = 7.6s
 - Average time in AN = 5s
 - Average time in training = 2.6s
- Note apparent loop timing trend towards MASTER preference with increasing channel length
- Very long TTLs (>15s) at 100m+ channels are associated with downshifts to 1Gb link speed

Green: TTL <= 7s; Yellow: 7s < TTL <=15s; Red: TTL >15s

Other TTL Metrics (Same Dataset)

Summary: Link interoperability measurements can clearly show differences in PHY autonegotiation and link state behavior as a function of channel characteristics

Time-To-Link Levers?

- TTL is a combination of both autonegotiation and 1G/10G startup behavior
 - Three sources of variability: Autonegotiation, "Retrain" (variability through 55.4.6.1) and "Retry" (return to 28.3.4)
 - Longest TTLs typically driven by multiple passes through the Clause 28 Arbitration state diagram after failed training attempts

AN & Training Times: 1000BASE-T

Measured autonegotiation and training times from 1,550 1Gb links.

- 10GBASE-T device to 1000BASE-T link partner
- Both endpoints set to "full auto" (autonegotiate speed, mode, and loop timing)

Results

- Autonegotiation
 - Average = 3.89s
 - Range = 3.25s to 5.50s
- Training
 - Average = 0.91s
 - Range = 0.575s to 1.175s

AN & Training Times: 10GBASE-T

Measured autonegotiation and training times from 1,550 1Gb links.

- 10GBASE-T device to 10GBASE-T link partner
- Both endpoints set to "full auto" (autonegotiate speed, mode, and loop timing)

Results

- Autonegotiation
 - Average = 3.35s
 - Range = 2.46s to 9.24s
- Training
 - Average = 2.98s
 - Range = 2.22s to 3.66s

AN Comparison - 1Gb/10Gb

Current autonegotiation times for 1000BASE-T and 10GBASE-T are comparable.

From an end-user perspective, it is highly desirable that 2.5G/5GBASE-T autonegotiation times align with these technologies, and that total time-tolink be minimized.

Technology	Representative Average AN (ms)	Representative Average Training (ms)	Representative Average TTL (s)
1000BASE-T*	3889	909	4.80
2.5GBASE-T	??	??	??
5GBASE-T	??	??	??
10GBASE-T	3346	2898	6.24

*10GBASE-T to 1000BASE-T link partner. 1000BASE-T to 1000BASE-T is slightly faster.

Observations from 10GBASE-T

- Channel topologies significantly affect the channel solutions realized by PHY DSP systems
 - "Peaky" impairments (return loss, crosstalk) appear to be a factor in link-trial-to-link-trial variability in the system solution
 - Transition region between RL/crosstalk-driven to IL-driven solutions
 - Channel lengths near 10GBASE-T PBO transitions
- PHY-specific responses to channel characteristics drive variability in autonegotiation and training time
 - Loop timing/clock recovery resolution
 - Time spent in 10GBASE-T startup states
- May have implications for both system performance and end-user experience
 - Potential to affect product time-to-market and customer ease-of-use

Summary

- Time-to-link from the end-user perspective
 - User time-to-link experience with the installed base of Cat5e/Cat6 cabling and 1000BASE-T is between 3s & 4s
 - User time-to-link experience with 10GBASE-T is ~7s (and in some cases, longer)
 - Measured 1000BASE-T and 10GBASE-T autonegotiation times are comparable
- Considerations for P802.3bz and the Architecture ad hoc
 - Can 2.5/5GBASE-T autonegotiation and startup times be improved to be more aligned with end-user expectations* and/or requirements?
 - *Assume they will be looking through a 1000BASE-T lens
 - Consider how time-to-link is affected when developing and evaluating 2.5/5GBASE-T autonegotiation proposals

Thank You!

Test Channels

- Focused channel selection using multiple cable types and lengths
 - 2m, 4m, 7m, 30m, 55m, 90m and 100m are "standard" channels for both TTL and BER
 - Other channel lengths (typically 5m increments) are used to check for consistent link behavior over a range of PHY channel solutions (different PBOs, operating margin, delay/delay skew, etc.)
- Includes direct connection, 2-connector, and 4connector topologies
- Test channel matrix will (of course) be modified for 40GBASE-T

Link Interoperability TTL Dashboards

- •Two different dashboard formats are used:
 - "Single dashboards" summarize a single data view
 - "Comparison dashboards" compare multiple "single dashboards" in a slightly different format
- Single dashboard pie charts are represented as a stacked vertical bar charts in comparison dashboards →

% TTL (Trials) and Cumulative % TTL (Time) 2m Example

IEEE P802.3bz 2.5/5GBASE-T Architecture ad hoc - May 5th, 2015

% TTL (Trials) and Cumulative % TTL (Time) 100m Example

