

Plastic Optical Fiber for Automotive

Naoto Ota , AGC Inc. Yuji Watanabe , AGC Inc. Hidenari Hirase , AGC Inc.

Topics of today's talk

- ✓ History of data link for automotive
- ✓ POF in IEC Standard
- ✓ Introduction of GI-POF
- ✓ Application examples of GI-POF
- ✓ Summary

History of Data link for automotive

Data rate	1980	1990	2000	2010	2020	2030
10Gbps≤ (Future)						OMEGA
1Gbps≤			Mos	Lsystem		E-T1 ASE-RHC 302.2bv)
<1Gbps		D2 CAN	IV	MOST25 MOST150 Flex Ray IDB1394		

- Copper or SI-POF have been used for automotive network.
- Regarding POF, SI-POF has been used for about 20 years in MOST system, and no critical error has been observed in the field.
- Recently, demand for over 10Gbps data transmission was raised due to increase of sensors and cameras in a car.
- SI-POF has limitation to transmit 10Gbps data, but GI-POF can transmit data with 10Gbps or higher data rate.
- GI-POF will be one of candidate for optical fiber in automotive.

Achievement of POF for automotive

Audi

- A1, A3, A5, A6, A7-sports back, A8
- Q3, Q5, Q7

BMW

- 1s, 3s, 5s, 6s, 7s
- X1, X3, X5, X6, Z4

Mercedes-Benz

- A, B, C, CLS, E, S, SL, SLK, GL, M, R, Maybach
- Smart forfour

VOLVO

- C30, C70, S40, S60, S80, V40, V50, V60, V70,
- XC60, XC70, XC90

Land Rover

Range Rover, evoque, Freelander, Discovery3&4

MINI (MINI, Coupe, Clubman, Countryman)

Porsche:

Cayenne, Boxster, Cayman, 911('11), Panamera

VW

Touareg

Hyundai

Genesis, Mohave, Equus

Aston Martin, Bentley, Jaguar, Rolls-Royce

Source: MOST Cooperation

Example of harness in a car

Example of hybrid harness using copper and POF cable

All cables used in a car are assembled into a "harnesses" before installing in a car. A Harness should have durability against rough handling and small bending during installation process. POF was adopted because it is suitable for such a harsh condition.

POF in IEC standard

- In the new IS for POF (IEC60793-2-40 Ed.5 to be published by May, 2020), two
 new sub categories will be added. (Red columns in the below table)
- A variant of A4i that has 105°C rating can be a candidate for automotive.

Sub category	A4a.2	A4g	A4h	A4i
Type	SI	GI	GI	GI
Core dia.(µm)	~1000 ^a	120	62.5	55
Fiber dia.(µm)	1000	490	245 ^b	490
NA	0.53	0.19	0.19	0.24
Operating wavelength (nm)	650	650 850 1300	850 1300	850
Applications	Automobile IEEE802.3bv	Data trans-mission	Data trans-mission	Industrial Data trans-mission

a Typically 15 µm to 35 µm smaller than the cladding diameter.

b Cladding diameters of 490 µm and 750 µm are also possible.

Assumed spec of automotive grade GI-POF AGC

Key features

- Temperature range -40 ~ 105°C
- Transmission capability
 10Gbps for 10m x 5 ea. (with 4 connections)
- Low bending loss
- Fatigue characteristic
 Static and dynamic
- Easy fiber end processing Productivity, cost

Other test items for automotive (TBD)

Mechanical test	Optical and Reliability test		
Operation Temperture Range	Long term winding test		
Minimum bending radius	Resistance to flame propagation		
Flexibility	Long term heat aging		
Tensile Strength	Long term Temperature and humidity aging		
Shrinkage	Low/High Temp. cycling		
Pistoning	Resistance to Hot water		
Impact	Repeted bending		
Low Temp. bending	Single bending		
High Temp. bending	Resistance to gas		
Low/High Temp. cycling	Resistance to fluid		
	Torison change		

Introduction of automotive grade GI-POF

Item	Plastic Optical Fiber	
Material	Perfluorinated polymer	
Туре	Grated-Index	
Bend characteristic	Bend insensitive	
Operation Temperature	-40C ~ 105°C	
Core diameter	50µm (TBD)	
Fiber diameter	490µm (TBD)	
NA	0.20 ~ 0.24 (TBD)	
Operating wavelength	650~1300 nm	

- GI-POF made from Perfluorinated Polymer can use light sources between 650~1300 nm.
- Core and fiber diameter can be changed according to application because it is plastics.
- Bend insensitive GI-POF (A4i type) has lower bending loss than normal A4h type GI-POF.

10G Transmission test for automotive link

9

- GI-POF can transmit 10Gbps for 10m x 5 ea. with 4 connections.
- Further transmission capability of GI-POF is reported as follows.
 - 25Gbps at 100m Ref.: Prof. Stephen E Ralph, C Patrick Caputo, Sriharsha Kota Pavan, "25G POF Links, ICAPP2011"
 - 40Gbps at 100m Ref.: S.R.Nuccio, L. Christen, X.Wu, S. Khaleghi, O.Yilmaz, A.E. Willner, and Y.Koike, Proc, "Transmission of 40 Gb/s DPSK and OOK at 1.55µm Through 100 m of Plastic Optical Fiber, ECOC, 2008"

Fatigue characteristic

Winding

Mandrel diameter : Φ10mm Turn number : 5

GI-POF has stable performance against static and dynamic fatigue.

- In winding test, GI-POF is wrapped around Φ10mm x 5 times.
 Loss is stable after 3000hours.
- In repeated bend test, GI-POF is bent at angle of 90deg to -90deg at 5mm bending radius.
 Loss is stable after 100k cycles.

Fiber end processing method

Method	Razor cutting	Milling	Rotary cutting	Polishing
schematic drawing	Razor blade	Rotating bite POF	POF Rotating blade	POF Polishing disc

Various fiber end processing methods can be applicable to GI-POF.

- "Razor cutting" is the simplest way that directly cut fiber by a razor blade.
- "Milling" is a way of scraping fiber end by rotating bite.
- "Rotary cutting" is a way of cutting like "cutting a log".
- "Polishing" is conventional method, and GI-POF can be polished by existing polishing machine.

Application examples of GI-POF

Mobility

Automotive

Medical Equipment

LAN in condominium

LAN in hospital

LAN

Summary

- Plastic Optical Fiber has been used for automobile for about 20 years.
- Technical feasibility of GI-POF for automotive optical link is promising in terms of following aspect:
 - Static and dynamic fatigue
 - 10Gbps and higher bit rate data transmission
 - Easy termination
- In the new international standard for POF, two new sub categories will be added.
 And a variant of A4i that supports 105°C rating will be a candidate for automotive.
- We would like to ask OMEGA members to consider GI-POF in your study.

Thank you for your attention.

