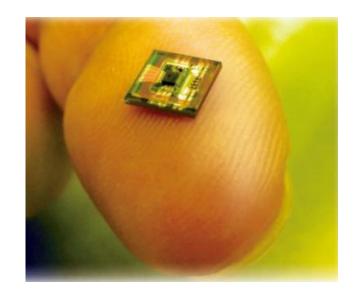
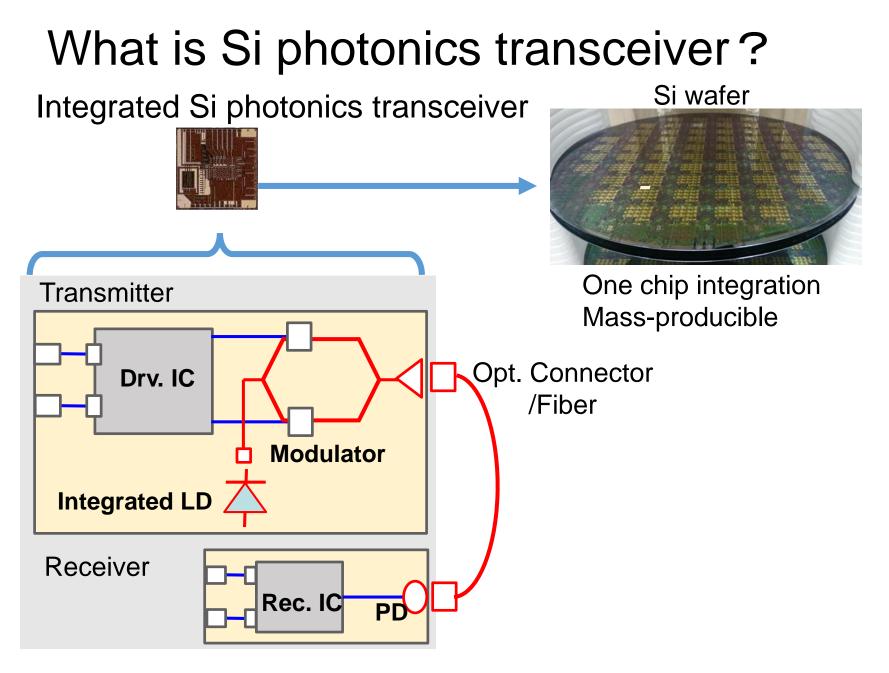
Introduction of Si Photonics transceiver technology with High temperature operation capability and MMF transmission


Ichiro Ogura, PETRA Kazuhiko Kurata, AIO Core Nov. 2019

IEEE 802.3 Multi Gigabit Automotive Optical PHY Study Group

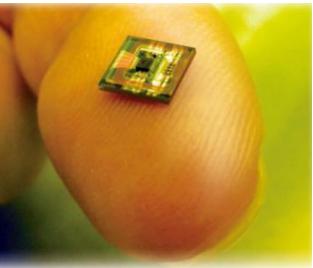
Introduction

No proposal in this presentation.


Introduction of Si photonics technology possibly applicable to Automobile interconnects.

Data-based discussions on high temperature operation, speed and reliability in response to the discussions by Rubén of Sept 2019 Interim in;

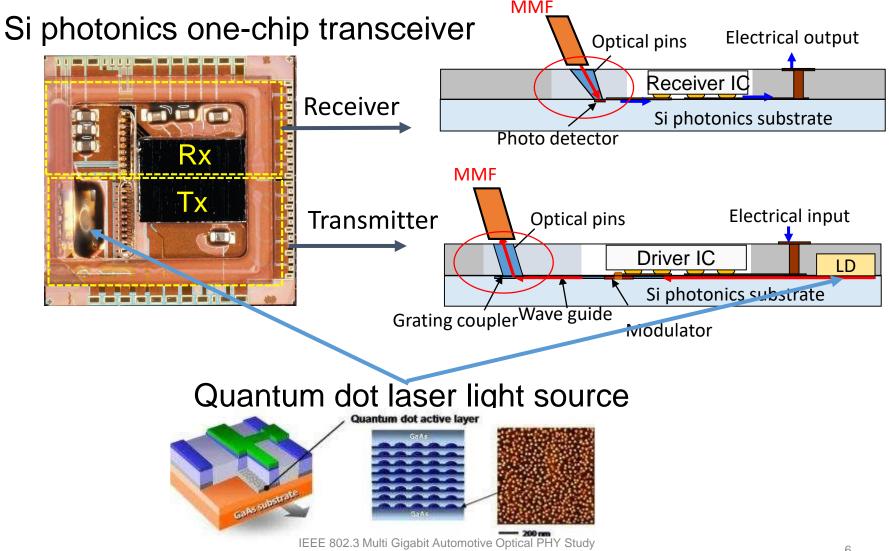
"Open discussion on objectives" and


"Technical and economic feasibilities Requirements and methodology for assessment".

Si photonics technology commercially available for short reach interconnect

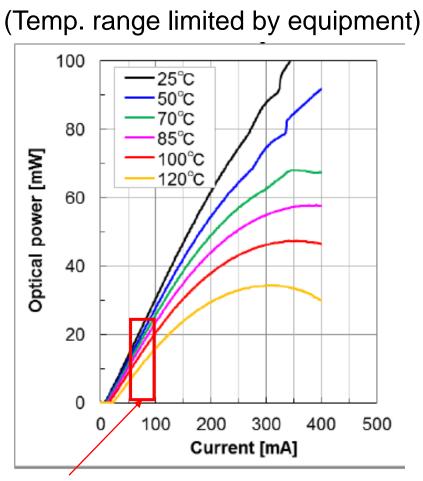
Optical I/O core chip based on silicon photonics

Item	Specification
Throughput	100G: 25Gx4ch Tx + Rx 300G: 25G × 12ch Tx/Rx
Footprint	5mm×5mm
Power consumption	5mW/Gbps
Wavelength	$1.3\mu m$ (O-band)
Media	MMF up to 300m*
	* 1310nm-ontimized I

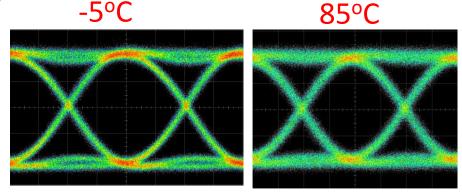

* 1310nm-optimized MMF

- High density
- Low power consumption
- User-friendly assembly
- Low cost solution through the combination of Si-Photonics and multimode optics with wide alignment margin

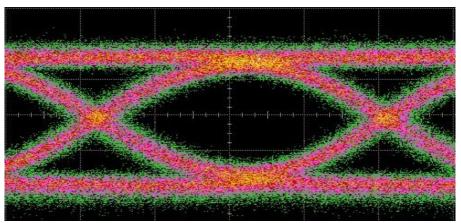
Data-based approach of Si Photonics for High speed, High temperature and High reliability in response to "Technical and economic feasibilities Requirements and methodology for assessment" by Rubén at Sept 2019 Interim


- IEEE Std 802.3 already includes the <u>10, 25 and 50G</u>BASE-SR specifications that may be considered as starting point to develop multi-gigabit optical PHY specification for automotive applications
 - nGBASE-SR are based on 850nm VCSEL, MM graded-index glass fiber, GaAs PIN diode
 - · However, are them really suited for automotive applications?
- Key differences between nGBASE-SR and the Automotive requirements:
 - Ambient temperature grades per AEC-Q100:
 - Grade 2: Ta = -40°C 105°C
 - Grade 1: Ta = -40°C 125°C
 - Grade 0: Ta = -40°C 150°C
 - Grade 2 imposes junction temperature range Tj = -40°C 125°C (power < 1W / port)
 - <u>15 years operation, 0 ppm failures</u>

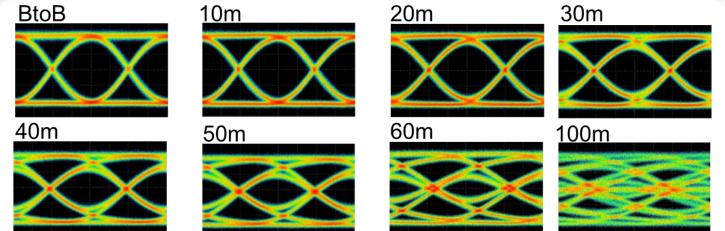
Si photonics with QD-laser and MMF optics for short reach incl. automobile

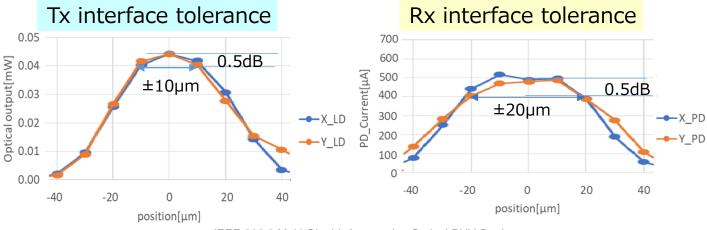

Group, Nov. 2019

High temperature operation of Quantum Dot LD light source



General Operation current


25Gbs Tx waveform


105°C (W/O LD bias control)

MMF Transmission data for OM3 OM3 >40m@25Gbps

Optical coupling tolerance >10 μ m for MMF

IEEE 802.3 Multi Gigabit Automotive Optical PHY Study Group, Nov. 2019

LD lifetime test results (tentative up to 105℃)

Acceleration test (Po=31mW)

for QD laser Results in

Ea=0.746eV

Arrhenius equation

- $\kappa = A^* EXP(-Ea/(kB^*T))$
- where κ : rate constant
- Ea: Activation energy 0.746eV
- kB: Boltzmann Constant(=8.617*E-5 eV/K)
- T : Absolute temperature(in kelvins)

MTTF in actual use at Po=20mW for Ea=0.746eV Expexted to be 20 years at 105℃

k = ko * exp{Ea/kB * (1/T -1/To)}* $(\frac{I}{Io})^{-n*}(\frac{P}{Po})^{-m}$ assumed n=2 & m=1


Redundancy (Dual redundancy) will benefit the required reliability for Automobile applications of ~0ppm@15 years

				85°	°C	95	°C
MTTF (Cumulative failure rate, F(t)=63.2%)			134,470	[hours]	63,682 [hours]		
Median life (Cumulative failure rate, F(t)=50%)			112,450	[hours]	50,470 [hours]		
F(t)	99.9% 99% 50% 20% 10% 5% 2% 1% 0.5% 0.2% 0.2%	Environment Temp. -63.2% MTTF	95 deg.C		deg.C		2.0 1.0 0.0 -1.0 -2.0 (1) -3.0 -4.0 -5.0 -5.0 -5.0 -7.0 -8.0
1	100	1,000	10,000	100,000	1,000,000	10,000,	
Estimated life [hours]							

Actual use condition(20mW@100mA、TO CAN)

Environment Temp.	Junction Temp. Tj(°C)	MTTF of 4 Channels (years)				
60℃	68.1	642				
85℃	95.0	87.5				
105℃	116.8	20.9				

Features for automobile applications

- Operation temperature up to 105 °C
- Operation up to 25Gbps (50G-NRZ in future)
- Commercial MMF(OM3) available for 40m reach

Summary

Data-based approach of Si Photonics for Automobile applications for High speed, High temperature and High reliability

- High speed 25Gbps and higher

- High temperature Quantum Dot Laser Source integrated Si Photonics transceiver operates over 105°C

Reliability
QD-LD lifetime expected over 20 years and redundancy will benefit high reliability

We would like to contribute and appreciate your feedback