

GaAs 14G VCSEL characterization for automotive applications

Rubén Pérez-Aranda rubenpda@kdpof.com

IEEE 802.3 OMEGA Study Group - November 2019 Plenary

Introduction

- GaAs 14G VCSEL (TRUMPF VCSEL-ULM850-14G-Gen3-V0) has been characterized in wide range of temperatures, between —40 °C and +125 °C, to assess the suitability for automotive applications
- Different oxide aperture diameters have been tested to analyze the parametric deviation due to production process variations
 - Corners: 8.7 um (high I_{TH} , slower) and 6.5 um (low I_{TH} , faster)
 - Devices with different oxide aperture diameters will experience different current density, therefore
 different aging acceleration, under the same current driving condition
- Characterization of 3 samples per corner is reported
- Temperature is measured in the bottom side of the PCB where the VCSEL is connected, with low thermal resistance vias connected to the top GND plane where VCSEL is attached
 - Temperature reported is substrate temperature: -40, 0, +25, +85, +105, +125 °C
 - Junction temperature is expected to be higher due to (I·V Po) and high thermal resistance of GaAs
- CPWG (co-planar waveguide with lower ground plane) high speed topology is used to connect coax cable 2.92 mm connector to VCSEL under test with good signal integrity

Equipment & Software

- Marki Microwave BTN-0040 bias tee (40 kHz to 40 GHz)
 - Used to combine bias current with RF signal from VNA or AWG
- Minicircuits TMP40-3FT-KMKM+, temperature stable 2.92mm cable, 40.0 GHz
 - Used to connect bias tee output to the DUT
- Newport 1484-A-50 fiber-optic multimode receiver, 800-865nm GaAs detector, 22 GHz, FC/PC
 - Used for S21 response measurement with VNA
 - Calibration provided for response de-embedding
- Keysight E5071C ENA Vector Network Analyzer
 - S21 magnitude response
 - Z11 real/imag reflect response
 - 2001 points linear sweep from 1 MHz to 20 GHz
 - Power -20 dBm
- Keysight B2901A Precision Source/Measure Unit
 - Bias current to VCSEL
 - Voltage drop measurement (V-I curve)
- Optokon OFT-820
 - Absolute optical power, calibrated for 850 nm

Equipment & Software

- Thorlabs FP1000URT 1 mm core multi-mode SI 0.50 NA glass fiber with Ø5.0 mm stainless steel tubing FT05SS
 - Used to collect full optical radiation from VCSEL (L-I curve)
- OFS C26133 2.2 mm simplex 62.5/200/230 GiHCS Cable, 3 meters
 - Used for AC and time-domain characterization
- Keysight M8195A 65 GSa/s, 25 GHz, Arbitrary Waveform Generator
 - Used to generate time-domain RF signal that drives the VCSEL
 - Capability of real-time digital signal processing with 8 bits DAC
 - Used to provide symbol clock to oscilloscope
- Keysight N1092C DCA-M Sampling Oscilloscope (one optical and two electrical channels)
 - Used to make the time-domain characterization with periodic arbitrary signal generated by VCSEL
- Keysight N1010A FlexDCA Sampling Oscilloscope Software, R&D package
- Matlab 2018a:
 - Test automation
 - Signal processing
 - Model extraction
 - User operator extensions for N1010A

Tests setups

DUT

I-V characteristic

L-I characteristic

I threshold characteristic

Resonance frequency characteristic

$$H(f) = C \cdot \frac{f_r^2}{f_r^2 - f^2 + j\frac{f}{2\pi}\gamma} \cdot \frac{1}{1 + j\frac{f}{f_p}}.$$

Damping rate characteristic

$$H(f) = C \cdot \frac{f_r^2}{f_r^2 - f^2 + j\frac{f}{2\pi}\gamma} \cdot \frac{1}{1 + j\frac{f}{f_p}}.$$

Extrinsic pole characteristic

$$H(f) = C \cdot \frac{f_r^2}{f_r^2 - f^2 + j\frac{f}{2\pi}\gamma} \cdot \frac{1}{1 + j\frac{f}{f_p}}.$$

-3 dB bandwidth characteristic

Eye diagram, 10 Gbps

- Signal type: NRZ
- Baud-rate: 10.625 GBd
- ER (current): 3 dB (expected worst case)
- AWG is configured with response correction calibrated from factory to avoid additional driving bandwidth limitations
- DCA receiver input filter: Bessel-Thomson 4^{th} order $BW_{-3dB} = 21 \text{ GHz}$
 - Configured to observe VCSEL response entirely w/o bandwidth limitation and make possible time-domain simulation correlation
- It is observed that as higher is the current density, better is the performance
 - Increasing current will not be a reliability problem in low temperatures
 - In high temperature we need to demonstrate feasibility with low current densities

Eye diagram, -40 °C

6.5 um, sample ID #12

IEEE 802.3 OMEGA Study Group - November 2019 Plenary

Eye diagram, 25°C

6.5 um, sample ID #12

Eye diagram, 125°C

6.5 um, sample ID #12

Is it possible to use this VCSEL for 25 Gbps?

8.7 um, sample ID #4

- 25 Gbps can be transmitted by implementation of pre-emphasis in the driver and higher average current density in the VCSEL, at the cost of higher complexity and power consumption
- Lesson learned: pre-emphasis may be implemented in the driver to improve the VCSEL response, therefore the receiver sensitivity for the same I_{BIAS} driving

Thank you

IEEE 802.3 OMEGA Study Group - November 2019 Plenary