Use Case-Requirements for Camera and Backbone

Xingxin Zhang
Intelligent Automotive Solution Business Unit, Huawei
September 2019

www.huawei.com
Case one-Automotive Camera

Image Quality vs Bandwidth

<table>
<thead>
<tr>
<th></th>
<th>30 FPS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hres</td>
<td>Vres</td>
<td>Fps</td>
<td>12bit</td>
<td>14bit</td>
<td>16bit</td>
<td>12bit</td>
<td>16bit</td>
<td>20bit</td>
<td>20bit</td>
<td>20bit</td>
</tr>
<tr>
<td>720p</td>
<td>1280</td>
<td>720</td>
<td>30</td>
<td>0.41</td>
<td>0.48</td>
<td>0.55</td>
<td>0.69</td>
<td>0.83</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1080p</td>
<td>1920</td>
<td>1080</td>
<td>30</td>
<td>0.93</td>
<td>1.09</td>
<td>1.24</td>
<td>1.56</td>
<td>1.87</td>
<td>2.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2k</td>
<td>2560</td>
<td>1440</td>
<td>30</td>
<td>1.66</td>
<td>1.94</td>
<td>2.21</td>
<td>2.76</td>
<td>3.32</td>
<td>4.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3k</td>
<td>2896</td>
<td>1876</td>
<td>30</td>
<td>2.44</td>
<td>2.85</td>
<td>3.26</td>
<td>4.07</td>
<td>4.89</td>
<td>6.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4k</td>
<td>3840</td>
<td>2160</td>
<td>30</td>
<td>3.73</td>
<td>4.35</td>
<td>4.98</td>
<td>6.22</td>
<td>7.46</td>
<td>9.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8k</td>
<td>7680</td>
<td>4320</td>
<td>30</td>
<td>14.93</td>
<td>17.42</td>
<td>19.91</td>
<td>24.88</td>
<td>29.86</td>
<td>39.81</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>60FPS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hres</td>
<td>Vres</td>
<td>Fps</td>
<td>12bit</td>
<td>14bit</td>
<td>16bit</td>
<td>12bit</td>
<td>16bit</td>
<td>20bit</td>
<td>20bit</td>
<td>20bit</td>
</tr>
<tr>
<td>720p</td>
<td>1280</td>
<td>720</td>
<td>60</td>
<td>0.83</td>
<td>0.97</td>
<td>1.11</td>
<td>1.38</td>
<td>1.66</td>
<td>2.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1080p</td>
<td>1920</td>
<td>1080</td>
<td>60</td>
<td>1.87</td>
<td>2.18</td>
<td>2.49</td>
<td>3.11</td>
<td>3.73</td>
<td>4.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2k</td>
<td>2560</td>
<td>1440</td>
<td>60</td>
<td>3.32</td>
<td>3.87</td>
<td>4.42</td>
<td>5.33</td>
<td>6.64</td>
<td>8.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3k</td>
<td>2896</td>
<td>1876</td>
<td>60</td>
<td>4.89</td>
<td>5.70</td>
<td>6.52</td>
<td>8.15</td>
<td>9.78</td>
<td>13.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4k</td>
<td>3840</td>
<td>2160</td>
<td>60</td>
<td>7.46</td>
<td>8.71</td>
<td>9.95</td>
<td>12.44</td>
<td>14.93</td>
<td>19.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8k</td>
<td>7680</td>
<td>4320</td>
<td>60</td>
<td>29.86</td>
<td>34.84</td>
<td>39.81</td>
<td>49.77</td>
<td>59.72</td>
<td>79.63</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations

- **Forward**
 - 4k is on the way, maybe not very soon, but very possible in the near 3-5 years
 - 20~32bit @60FPS might be needed for high level autonomous driving features/functions

- **Backward**
 - Control
 - OTA upgrade

- **Power supply**
 - Power on wire for space saving
 - Hybrid channel maybe a good option, fiber for forward, cooper for backward & power

Suggestions

- Asymmetric rate, ≥10Gbps for forward, approximately 100Mbps for backward

Note: The data rates are in the unit of Gbps, and include 20% protocol overhead

Image quality is determined by three key parameters: resolution, dynamic range and frame rate.
Case two - In-vehicle backbone

E/E architecture evolution

- Traditional architecture
- Domain architecture
- Zone architecture

Source: Continental

Observations

- Bandwidth: ≥ 25/50Gbps
 - Zone based architecture seems popular in the future
 - Massive sensor traffic aggregate at Zone Switches, for enabling high level AD features
- Symmetric vs Asymmetric
 - Implementation Specific
 - Symmetric is benefit for flexible AD ECU deployment and function redundancy
 - Asymmetric for lower cost
- EMC issue
 - EMI/EMS would be a big challenge, especial for electric cars

Suggestions

- ≥ 25/50Gbps
- Both Symmetric & Asymmetric are considered

Autonomous Driving Sensors

- 4-6 4k-Cameras
- 6-10 lower resolution Cameras
- 1-4 Lidars with 16/64-line
- 6-10 Radars
- Other sensors ...
Summary

Multiple Rate levels for different scenarios
• ≥ 25/50Gbps for backbone bidirectional
• ≥10Gbps for Camera forward
• <200Mbps for Camera backward

Support both Asymmetric and Symmetric mode
• Asymmetric only for Camera
• Symmetric and asymmetric for backbone

Hybrid Channel could be a choice for Automotive Camera
• Fiber for forward, cooper for backward & power
• Hybrid cable & connector
Thank you

www.huawei.com