

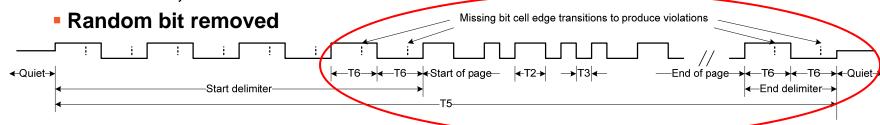
Auto-Negotiation Baseline Proposal

IEEE 802.3bp – Plenary – November 2014

Brett McClellan, Marvell

Agenda

- General points of agreement
- Updates
- Open issues
- Baseline Proposal
- Performance simulation results
- Next steps


What occurred thus far

- March 2014 Details of single pair auto-negotiations presented
 - Lo_3bp_03_0314.pdf
 - Lo_3bp_04_0314.pdf
- May 2014 Improvements on above
 - Thaler_01_0514.pdf
- ▶ May 2014 Added auto-negotiation to 1000BASE-T1 objectives
 - Lo_Thaler_Tazebay_01_0514.pdf
- June 2014 Offline discussions
- July 2014 Additional work state machines presented
 - Lo_3bp_02a_0714.pdf
- September 2014 Additional work DME performance
 - McClellan_Lo_3bp_01_0914.pdf

Agreed items in June discussions

- Use Clause 73 as starting point ok
 - Lo_3bp_04_0314.pdf
- Half duplex concept for auto-negotiations ok
- Circled portion of page below agree upon
 - 64-bit page
 - 48-bit data
 - 16-bit CRC; X¹⁶ + X¹⁵ + X² + 1

Agreed items in June discussions

- Starting polarity will be randomized instead of using random bit
- Base period T3 will be 8ns if 750MHz baud rate selected
- Delimiter T6 will be 3 T3 periods instead of 4 T3 periods
- Single CRC match instead of 3 matching pages
 - ability_match and acknowledge_match redefined

Agreed items in June discussions

- Most bits of base DME page defined
 - D[4:0] = S[4:0] = 00001 IEEE 802.3
 - D[9:5] = E[4:0] = Echoed Nonce
 - D[13] RF
 - D[14] Ack
 - D[15] Next page
 - D[20:16] = T[4:0] = Transmitted Nonce
 - D[47:21] = TBD Ability fields
 - D[63:48] = CRC16
- Receive state machine can be optimized not to waste first received page
- Silence limits of +/- 50mV

July update

- ▶ Complete half duplex autoneg state machines
 - Transmit see correction on next slide
 - Receive
 - Half Duplex
 - Arbitration
- Improved collision resolution time

September update

- Updated Transmit state machine
 - Differentiated start and end delimiters
 - Incorporated CRC16
 - Randomized starting polarity
- ▶ D[24:21] Ability Field
 - D[21] reserve for 1TCPE
 - D[22] reserve for 1TCPE EEE
 - D[23] 1000BASE-T1
 - D[24] 1000BASE-T1 EEE
- DME performance simulations

Open Issues in September

- tu_3bp_01a_0914
 - T3 selection
 - -T3 = 8ns is not suitable for 100BASE-T1 AFE.
 - -100BASE-T1 PHY requires T3 >= 15 ns due to AFE baud rate = 66.6MHz.
 - PoDL HPF introduces droop into the DME response
 - -Closes the eye of the data transition period (half symbol)

Why Differential Manchester Encoding?

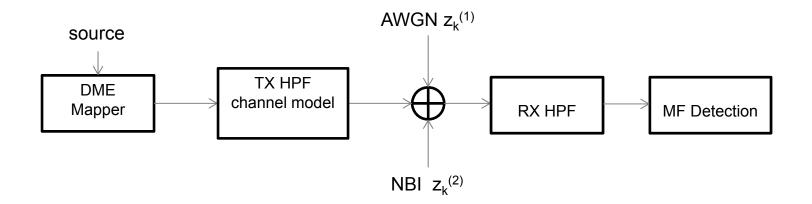
- Manchester is a DC free code
 - Ideal for high pass / band pass channels
 - 2 fundamental frequencies: F and F/2
- Auto channel is a band pass channel
 - PoDL high pass at 1MHz to 10Mhz
 - 100BASE-T1 receiver low pass around 33MHz
- Differential Manchester
 - Polarity insensitive
 - Simple and robust decoding

Differential Manchester Decoding

- Level detection at the data half period
 - Compare to clock half period: change -> bit = 1
 - Suffers heavily due to droop from 10MHz HPF
 - Data eye closes due to droop
- Level detection at the clock half period
 - Compare to previous clock half period: change -> bit = 0
 - Suffers little due to droop from 10MHz HPF
 - Clock period eye stays open
- Edge Detection
 - Subtract the data amplitude from the clock amplitude analog or digital
 - Improves immunity to noise
- Matched filter
 - Oversampled detection
 - Improves immunity to noise and NBI

Baseline Proposal

- See submitted draft text
- Set T2 as a common clock to 100M and 1G
 - -T3 = 30ns
 - T2 (DME period) = 60ns (16 2/3 MHz)
 - -100BASE-T1 clock ÷ 4
 - -1000BASE-T1 clock ÷ 45
- ▶ T2 is within the pass band of 100M and 1G
 - 16 2/3 MHz
 - Above the 1MHz and 10MHz HPF for PoDL
 - -Below the ~33 MHz bandwidth of 100M
- New start delimiter
 - 32 * T3 PRBS sync pattern includes DME violations
 - High frequency pattern pass through 10MHz HPF for 1G
 - Low frequency DME violation easily detected


DME Performance

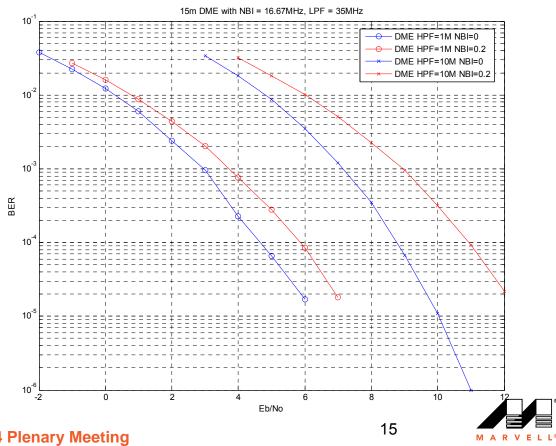
Channel impairments

- PoDL DC and low frequency noise, blocked by 10MHz High Pass network
 - HPF filter attenuates low frequency and distorts the pulse response
- AWGN multiple broadband noise sources such as thermal noise
- Inter-symbol interference (ISI) introduced by the channel, e.g. 15m UTP
- Narrow Band Interferers (NBI)
 - Worst performance when NBI matches the baud rate

Simulation Model

- No equalizer
- AWGN $z_k^{(1)}$ ~N(0, σ²)

•
$$P_{AWGN}$$
=10log₁₀(σ^2 /(2/3)) (dB)


► NBI $z_k^{(2)} = A\cos(2\pi(F_c/F_s)k + p_0)$

•
$$P_{NBI} = 10log_{10}(A^2/2) (dB)$$

16 2/3 MHz DME BER vs. impairments, 15m

- Robust BER performance in presence of impairments
 - Acceptable loss due to the HPF network
 - performs well under NBI
- BER shown for 15m channel, NBI = 16 2/3 MHz at 0 & 0.2 Vpk

Next Steps

- Adopt proposed text as auto-negotiation baseline with the understanding that additional changes will be needed once tentative items firm up
- Start work in the ad hoc and build simulations based on adopted baseline to root out hidden issues and refine specification

THANK YOU

