D-PLCA Follower Node ID Time Randomization (Comment I-97)

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Tim Baggett

Acknowledgments

Patrick Somers (Microchip)
David Law (HPE)

Background

- New D-PLCA nodes joining the network wait in the LEARNING state for a number of PLCA cycles defined by the aging_cycles variable.
 - This time is spent listening to the network building up a table of claimed and unclaimed transmit opportunities.
 - A "claim" means a packet was detected in that transmit opportunity
- Once the wait is completed, the node immediately selects the smallest unclaimed TO from the claim table in the FOLLOWER state

Fig 148-8 – D-PLCA Control State Diagram (pg 82)

Problem

- When Follower nodes first detect a BEACON, they enter the LEARNING state synchronously. They then select the same lowest claimed TO.
 - The first node to successfully transmit a packet in the TO, wins the claim
 - But multiple nodes may attempt to transmit in the same TO
 - Collisions are expected during start-up and convergence of the D-PLCA algorithm
 - Probability of collisions depends on transmit traffic patterns
- Consider a segment of identical devices (same hardware, firmware, etc.) yielding identical behavior.
 - If MPoE is used, they all will get powered-up simultaneously
 - The identical behavior will result in simultaneous transmission resulting in significant collisions and packet loss

Problem

- Plot below illustrated the convergence of six Follower D-PLCA nodes on start-up.
- At reception of the first BEACON, the Follower nodes enter the LEARNING state and listen.
- Upon entering the FOLLOWER state for the first time all nodes select '1' which one successfully transmits and claims
- Remaining nodes then select TO '2' of which one successfully transmits and claims
- Remaining nodes then all select TO '3', and so on...

Simulation of Worst Case

- Verilog Behavioral model
 - Segment of 7 nodes: one coordinator, 6 followers
 - Each follower transmits 50 packets
 - No delay between packets, MAC always has a packet pending transmission
 - aging_cycles initially set to 128 for illustrative purposes

Simulation of Worst Case

Simulation Results

- 78 collisions (17 packets with excessive collision errors)
- 0 excessive deferral errors

Proposed solution

- The solution proposed is to allow for a random number of PLCA cycles to occur before selecting the lowest unclaimed TO from the claim table.
 - Nodes that wait less will have more cycles in which to transmit and claim the TO before other nodes that wait longer to pick a TO.
 - Nodes waiting longer will pick a different TO if the earlier node transmits & claims

Result is that nodes spread out their selection of a TO

Fig 148-8 Changes

New D-PLCA Variables 148.4.7.2

pick wait cycles This variable is the number of BEACONs that will be received (PLCA cycles) before entering the **FOLLOWER** state and selecting an unused transit opportunity. The value is a random number selected from the range of 0 to the value of aging cycles divided by two upon entry into the **LEARNING and FOLLOWER states.**

pick wait count This variable counts the number of BEACONS received (PLCA cycles) since exiting the LEARNING state

From

From

To

dplca new age

CLAIMING(local nodeID) +

Simulation of Worst Case with Proposed Change

- Simulation Results with proposed delay in picking free TO ID
 - 0 collisions (compare to 78 without the change)
 - 4 excessive deferral errors (compare to 0 before the change)

Prior to proposed change:

After the proposed change:

Simulation of Worst Case with Proposed Change

- Simulation Results with varying aging_cycles
 - Each follower transmits 50 packets
 - MAC transmit is always pending

Significant reduction in start-up collisions for small increase in excessive deferrals and convergence time.

Note: "Before" proposed change - no delay before picking free TO ID
"After" proposed change - random PLCA cycle delay before picking free TO ID

	# Collisions		# Excessive Collisions		# Excessive Deferrals		Convergence Time (ms)	
aging_cycles	Before	After	Before	After	Before	After	Before	After
32	78	11	17	1	0	2	16.8	6.8
64	77	6	17	0	0	3	17.6	12.4
128	78	0	17	0	0	4	20.2	26.0

What about random packet transmission?

- Simulation Results with varying aging_cycles
 - Each follower transmits 50 packets
 - Uniform random delay between 0-500 µs between packet transmissions

Start-up collisions reduced traded for convergence time and small increase in excessive deferrals.

	# Collisions		# Excessive Collisions		# Excessive Deferrals		Convergence Time (ms)	
aging_cycles	Before	After	Before	After	Before	After	Before	After
32	11	13	3	0	0	1	4.5	9.0
64	15	6	3	0	0	3	7.3	8.4
128	15	0	3	0	0	4	9	19.0

Simulation Results – 50 packets/follower

No delay between follower transmit packets pending

			# Excessive		# Excessive		Convergence	
	# Collisions		Collisions		Deferrals		Time (ms)	
aging_cycles	Before	After	Before	After	Before	After	Before	After
32	78	11	17	1	0	2	16.8	6.8
64	77	6	17	0	0	3	17.6	12.4
128	78	0	17	0	0	4	20.2	26.0

Random 0-500 µs delay between follower transmit packets pending

	# Collisions		# Excessive Collisions		# Excessive Deferrals		Convergence Time (ms)	
aging_cycles	Before	After	Before	After	Before	After	Before	After
32	11	13	3	0	0	1	4.5	9.0
64	15	6	3	0	0	3	7.3	8.4
128	15	0	3	0	0	4	9	19.0

Simulation Results – 20 packets/follower

No delay between follower transmit packets pending

			# Excessive		# Excessive		Convergence	
	# Collisions		Collisions		Deferrals		Time (ms)	
aging_cycles	Before	After	Before	After	Before	After	Before	After
32	37	11	9	1	0	2	10.6	6.8
64	36	25	9	0	0	4	11.4	13.4
128	36	0	9	0	0	4	13.6	16.2

Random 0-1000 µs delay between follower transmit packets pending

	# Collisions		# Excessive Collisions		# Excessive Deferrals		Convergence Time (ms)	
aging_cycles	Before	After	Before	After	Before	After	Before	After
32	12	10	0	0	0	1	3.1	10.0
64	12	1	0	0	0	3	4.2	5.9
128	12	0	0	0	4	4	6.5	9.8

Conclusion

- Excessive Deferrals dependent upon the number of aging_cycles
 - Longer cycle to update the claim table in LEARNING, the longer the packets remain pending
- Any randomization of time between packet transmission significantly helps
 - Lowers number of collisions, excessive collisions, and convergence time
- Delaying a random number of PLCA cycles before picking an unclaimed TO:
 - Improves performance in described worst-case segment condition
 - Slows down node ID convergence
 - Can increase excessive deferrals
- Downside could be managed by adjustment of aging_cycles such as using aging_cycles=64 as in the case simulated

Conclusions

- Adding a random wait before picking an unclaimed TO:
 - Improves performance in described worst-case segment condition
 - Slows down node ID convergence
 - Can increase excessive deferrals
- Downsides could be managed by adjustment of aging_cycles such as using aging_cycles=64 as in the case simulated

Thank You

Questions?

