
Pat Thaler
4 Feb 98

Usage of maxFrameSize in 8802-3 and it's supplements

Based upon search of 8802-3, 802.3u, 802.3xy and 802.3z with deprecated clauses
excluded. This means that several instances of maxFrameSize in clause 19 are not cited.

Places where the value must be 1518:

802.3xy, 3.2.7 Data and PAD Þelds: The maximum possible size of the data field is
maxFrameSize - (2 x addressSize + 48)/8 octets.

802.3z, 4.2.7.1 Common Constants, and Types and Variables: maxValidFrame =
maxFrameSize – (2 x addressSize + lengthOrTypeSize + crcSize) / 8;
{in octets, the maximum length of the MAC client data field. This constant
is defined for editorial convenience, as a function of other constants}

Places where implementations may use either 1518 or 1522 and are not required to
base that on the Type Field value:

802.3z, 4.2.4.2.1 Framing: a) Maximum Frame Size. The receiving CSMA/CD sublayer
is not required to enforce the frame size limit, but it is allowed to truncate frames longer
than maxFrameSize octets and report this event as an (implementation-dependent) error.

802.3z, 4.2.9 Frame Reception: exceedsMaxLength := ...; {check to determine if receive
frame size exceeds the maximum permitted frame size (maxFrameSize)}

802.3xy, 4.4.2 Allowable implementations: NOTE-Current approved projects that are in
development in IEEE 802 may result in an increase in maxFrameSize of several octets.
This increase would be accompanied by a change to the Data Link layer frame format.
The number of octets available for upper layer protocols or user data would not increase.

802.3z, 5.2.4.1 Common Constants and Types: maxDeferTime = ...; {2 x
(maxFrameSize x 8) for operating speeds of 100 Mb/s and below, and 2 x (burstLimit +
maxFrameSize x 8 + headerSize) for operating speeds greater than 100 Mb/s, in bits,
error timer limit for maxDeferTime} [Note: this was not addressed in 802.3ac, but I put
it in this category since the precision of this value is not that important. This value is
twice maxFrameSize and will not detect false errors with Tagged frames even if 1518 is
used.]

8802-3, 12.4.3.2.5 Retiming (jitter removal): Excessive differences in clock rates (caused
by clocks not meeting 12.3.2.4.1) and excessively long packets (caused by exceeding
maxFrameSize) may each cause the capacity of the retiming function to be exceeded.

802.3z, 30.3.1.1.25 aFrameTooLongErrors: NOTE— The parameter maxFrameSize is
being considered for revision in P802.3ac to accommodate the requirements of two

bridging projects under development, P802.1p and P802.1Q.; [Interestingly, the actual
behavior just vaguely says "frames that exceeded the maximum permitted frame size"
rather than refer to maxFrameSize parameter or exceedsMaxLength variable, though
many other objects use maxFrameSize.]

802.3z, 30.4.3.1.4 aReadableFrames: A representation of the total frames of valid frame
length. Increment counter by one for each frame whose OctetCount is greater than or
equal to minFrameSize and less than or equal to maxFrameSize (see 4.4.2.1) and for
which the FCSError and CollisionEvent signals are not asserted.

802.3z, 30.4.3.1.6 aFrameCheckSequenceErrors: Increment counter by one for each
frame with the FCSError signal asserted and the FramingError and CollisionEvent signals
deasserted and whose OctetCount is greater than or equal to minFrameSize and less than
or equal to maxFrameSize (see 4.4.2.1)…..
NOTE— The parameter maxFrameSize is being considered for revision in P802.3ac to
accommodate requirements of two bridging projects under development, P802.1p and
P802.1Q.;

802.3z, 30.4.3.1.7 aAlignmentErrors: Increment counter by one for each frame with the
FCSError and FramingError signals asserted and CollisionEvent signal deasserted and
whose OctetCount is greater than or equal to minFrameSize and less than or equal to
maxFrameSize (see 4.4.2.1).

802.3z, 30.4.3.1.8 aFramesTooLong: Increment counter by one for each frame whose
OctetCount is greater than maxFrameSize (see 4.4.2.1)….
NOTE—The parameter maxFrameSize is being considered for revision in P802.3ac to
accommodate the requirements of two bridging projects under development, P802.1p and
P802.1Q.;

8802-3, B.2.1 Delay budget:
Hub Delay Stretch/Shrink (see 12.9.5) 3
((preamble + <sfd> + maxFrameSize) · 0.01% · 2)

Variable declaration and value assignment:

802.3z, 4.2.7.1 Common Constants, and Types and Variables: maxFrameSize = ... ; {in
octets, implementation-dependent, see 4.4}

802.3z, 4.4.2.1 Parameterized values: maxFrameSize 1518 octets

802.3z, 4.4.2.2 Parameterized values: maxFrameSize 1518 octets

802.3z, 4.4.2.3 Parameterized values: maxFrameSize 1518 octets

802.3z, 4.4.2.4 Parameterized values: maxFrameSize 1518 octets

802.3z, 5.2.4.1 Common Constants and Types: maxFrameSize = ...; {in octets,
implementation-dependent, see 4.4}

Other references to maximum frame size:

802.3xy, 4.3.2 Services provided by the MAC sublayer: The frameTooLong error
indicates that a frame was received whose frameSize was beyond the maximum
allowable frame size.

802.3u, 25.3 General exceptions: maximum stream size = 3054 code-groups.

802.3u, 26.3 General exceptions: maximum stream size = 3054 code-groups.

Places where the value used must be dependent on Type Field value:

Absolutely NONE!

A proposal for adapting 802.3 for tagged frame lengths

In no place is maxFrameSize actually used where it has a different value for tagged and
untagged packets because the requirements for acceptable transmit frames control length
in terms of MAC client data size which is the same regardless of tag. Therefore, a
general approach which does not require any pseudo-constant which changes value
depending on frame type field can be applied.

Leave maxFrameSize as a true constant with a value of 1518 and rename it
maxUntagFrameSize.

Create qTagPrefixSize := ... ; {4 octets}

For receive packet handling by MACs, change the action for setting exceedsMaxLength
to allow a choice between maxUntagFrameSize or maxUntagFrameSize + tagSize and
implementations may either always use one value in which case the latter is
recommended or may choose the value based on the type field value.

In MAC entity managed objects, for 30.3.1.1.25 aFrameTooLongErrors no change is
necessary since the exceedsMaxLength change in the Pascal takes care of it.
(exceedsMaxLength is used to determine whether frame status is FrameTooLong.)

In repeater entity managed objects for 802.3z, 30.4.3.1.8 aFramesTooLong: Increment
counter by one for each frame whose OctetCount is greater than maxFrameSize (see
4.4.2.1)….

Change to " Increment counter by one for each frame whose OctetCount is greater than
maxUntagFrameSize or maxUntagFrameSize +tagSize (see 4.4.2.1). A repeater may use
either value, in which case the latter value is recommended. Alternatively, a repeater
may use the value maxUntagFrameSize + tagSize for tagged frames and
maxUntagFrameSize for untagged frames…."

For aReadableFrames, aAlignmentErrors, and aFrameCheckSequenceErrors, condition
them incrementing on aFramesTooLong not being incremented rather than on length less
than either value as that makes sure that only one increments for each frame.

For 4.2.4.2.1, Wording is open enough that no change except updating to
"maxUntagFrameSize" is necessary. "is allowed to truncate". Do we want to add a
recommendation here that the receiving sublayer be capable of receiving frames
maxUntagFrameSize + tagSize?

For 5.2.4.1, 12.4.3.2.5 and B.2.1, update variable name. No other change is needed.
Clock skew is less than 3 bits for either frame size and deference already has a 100%
safety margin. Should we deprecate 12?

4.3.2 would be a good text place to explain the use of maxUntagFrameSize and
maxUntagFrameSize + tagSize.

In 25.3 and 26.3 increase the maximum stream by 8 code groups or change to a
calculation based on maxUntagFrameSize + tagSize.

