Link Aggregation Control Protocol

Mick Seaman

While not reiterating basic concepts, this note attempts a complete description of the
protocol, with the exception of flush mechanisms which are orthogonal to LACP itself.

This revision summarizes my understanding’ of the P802.3ad Link Aggregation Control
Protocol described in D1.0 and proposes some minor changes. The latter flesh out the
previously agreed manual configuration defaults for Partner parameters. These were not
fully incorporated into D1.0, as is highlighted by the Editor's Note on page 96 of the draft.

The proposed changes result in some simplification of the state machines, particularly of
the periodic machine, as well as increased flexibility in protocol use. The information
communicated by the protocol is unchanged.

The description given in Rev 1.6 and Rev 1.1 of this note has also been updated to reflect
the management terminology and the 80%.3 shared variable communication state
machine conventions used in P802.3ad D1.0".

A separate note describes possible protocol extensions, outside the scope of the
proposed standard, that ensure predictable protocol operation for links attached to shared
media. Such links cannot occur if 802.3 standard equipment is used: the scope of the
proposed link aggregation standard is limited to full duplex links, and there is no
standardized full duplex repeater.

This note is not a ballot comment, but provides background for ballot comments in the
usual form. Most of the commentary on proposed changes is provided as footnotes, to
allow me to strip these out as and when ballot comments are resolved.

1 Churn detection is missing from this description. Simply lack of time.

2This has had one particularly interesting effect. In the description in D1.0 and prior versions of P802.3ad, where signaling between state
machines was event based, common signals ‘LACPDU Received’ and ‘infoExpired’ were used to signal to a number of machines. The use of
common variables for signaling is less attractive, since confusion may arise as to which receiving machine should reset the variable, if that is
required to allow for some delay in executing the necessary actions. In this revised description the receive machine and match logic together
now signal ‘not selected’ to the selection logic, and ‘matched, not matched’ to the mux control machine. The periodic transmission machine
operates directly on the relevant operational state variables and does not require any additional signalling variables. The signaling of ‘need to
transmit’ through setting of the variable ‘ntt’ by various machines is unchanged — there is only one recipient of the signal, the transmission
machine.

Rev. 4.0 Saturday, March 7 1999

Protocol Participants

The protocol is described from the point of view
of the physical ports, that represent a single
point of attachment to a transmission medium.
Each physical port that may be aggregated with
other physical ports is a participant in the
protocol.

Aggregation is modelled by the attachment of
one or more physical ports to a Mux that
distributes and collects frames from and to the
aggregate port®. Aggregate ports represent a
point of attachment of higher layer protocols.

In the familiar case of individual links there is a
trivial one to one correspondence between
physical and aggregate ports which is so obvious
that we do not distinguish them”.

When it is clear that protocol exchanges
between participants in separate systems are
being discussed (rather than the aggregate
behavior of participants in a single system) the
term “participants” refers to the local participant,
sometimes called the “actor” for clarity, and his
remote “partner”.

Protocol Data Units

A single message type, the LACPDU, is
transmitted by protocol participants. It comprises
the following information both for the transmitting
actor, and its remote partner : the partner
information being the actor’s current view of its
partners parameters.

« Port Number

e System ID

 Key

e Status

The Status information communicated

comprises the following flags®:
e LACP_Activity

3| think | have a terminology problem with respect to D1.0, my
‘aggregate port' is its ‘aggregator’ (this was Cisco's aggport |
believe), my ‘physical port’ is D1.0's ‘aggregate port'.

4 So if you are in the aggregation ‘layer’ you look down through
physical ports to the transmission medium and up through
aggregate ports to the users of that medium.

5 Most network protocols were originally designed to run over a
single link layer access point, and as the requirement to provide
transparent multiplexing over a number of links as emerged this
distinction between ‘user down’ ports and ‘provider up’ ports has
been widely introduced and is familiar to the designers and user of
wide area protocols. Most routers provide a universal abstraction
for this concept across the details of the particular multiplexing
technology.

6 It is proposed that these flags be encoded in a LAC PDU as bits
in a transmitted octet. Since only 6 flags are currently defined, the
treatment of the two ‘spare’ flags is explictly defined to facilitate
interoperability and protocol upgradeability should that ever be
desired. All the received flags are reflected into the actor's view of
the partner's state.

Rev. 4.0 Saturday, March 7 1999

e LACP_Timeout
e Aggregate

e Synchronization
* Collecting

e Distributing

The LACP_Activity flag indicates a participant’s
intent to transmit periodically to detect and
maintain aggregates. If set’ the flag
communicates Active LACP, if reset Passive
LACP. A passive participant will participate in the
protocol if it has an active partner.

The LACP_Timeout flag indicates that the
participant wishes to receive frequent periodic
transmissions”, and will aggressively times out
received information. If set the flag
communicates Short Timeout, if reset Long
Timeout.

The Aggregation flag indicates that the
participant will allow the link to be used as part of
an aggregate. Otherwise the link is to be used as
an individual link, i.e. not aggregated with any
other. This flag is set or reset as a consequence
of local key management : the participant may
know that the link has a unique key” and hence
will not be aggregated. Signaling this information
allows the receiving actor to skip protocol delays
that are otherwise invoked to allow all links with
the same system id and key combinations to be
collected into one aggregate port without
successive rapid changes to aggregate ports
and accompanying higher layer protocol
disruption.™ 'If ‘set the flag communicates
Aggregatable, if reset Individual.

The Synchronization flag indicates that the
transmitting participant's mux component is in
sync with the system id and key information
transmitted. This accommodates multiplexing

7 Strictly speaking we are discussing interpretation of the flag
within the protocol entity here, not the encoding of LAC PDUs.

8 Probably because it lacks confidence that its own hardware will
indicate a disabled physical link quickly

9 An alternative approach to explictly signaling “individual” would
have been to allow the protocol machine to change the key to a
reserved null value with the same semantics. However this blurs
the network administrator’s original intention (in setting the key
value) with operational actions taken by the protocol entity
(deciding a link is individual on the basis of its own information
rather than having to consult with its partner). Using ‘clever
encodings which have this blurring effect add nothing to protocol
simplicity, transparency, or upgradability, and we are hardly short
of the encoding space for one bit.

10 Asserting “individual” is a potential exit route for the protocol
machine in future scenarios and it is anticipated that it will be
useful if an extension to shared media is ever standardized.
Another reason not to confuse this functionality with the
administrator assigned key.

hardware' that takes time to set up or
reconfigure.™ If set the flag communicate In
Sync, if reset Out of Sync.

The Collecting flag indicates that the
participant’'s collector, i.e. the reception
component of the mux, is definitely on. If set the
flag communicates collecting.

The Distributing flag indicates that the
participant’s distributor is not definitely off. If
reset the flag indicates not distributing.

Protocol Machine

As an aid to understanding and analysis the
protocol machine for each participant is
partitioned into the following components:

e Receive Machine

e Match Logic

e Periodic Transmission Machine
* Selection Logic

e Mux Control Logic and Machine
e Churn Detection Machine

e Transmit Machine

The Receive Machine maintains partner
information, recording protocol information from
LACPDUs sent by remote partner(s). Received
information is subject to a timeout, and if
sufficient time elapses the receive machine will
revert to using default partner information™>.

As the Receive Malghine processes received
LACPDUs, it uses™ the Match Logic to
determine if:

" And software if the multiplexing is under the control of a
separately scheduled software process communicating. with the
actor's port based LACP protocol entity.

12While a principal goal of this protocol is ensuring high
availability, that does not require that new links or physical ports
be added to aggregates rapidly, simply that links or physical ports
that have failed be removed in a timely fashion. Since the
mechanism prompting addition will usually involve administrator
intervention either at an administrative console or simply adding a
physical link in a plug and play environment that is fortunate. This
observation can be taken advantage of in structuring the protocol
design and ensuring that it applies to the widest possible set of
existing and new hardware and systems.

13 The receive machine does not revert to default partner
information immediately. This allows a physical port which has
been “unplugged’ (disabled) to continue to select the same
aggregate port, minimizing disruption to higher protocol layers,
particularly if the plug is put back in later allowing the port to
resume its role in the aggregate. However while the port is
unplugged the received information will expire so there is no
danger of a ‘match” being reported on the basis of very old
information from a protocol partner.

14 Placing the Match Logic inside the Receive Machine avoids the
need to keep a record of the partner’s view of the actor’s protocol
parameters, the comparison being done on receipt. This is a
change to the description in D1.0. It is possible to pull out the
Match Logic, though the use of partner default information makes
this more cumbersome than previously.

Rev. 4.0 Saturday, March 7, 1999

a) the participants have both agreed on the
protocol information exchanged so that the
physical port can be used in an aggregate

b) differences exist between the actor's
protocol information and the partner's view
of that information, requiring the actor to
transmit a further LACPDU™.

The Periodic Transmission Machine
establishes the desire of the participants to
exchange LAC PDUs periodically to maintain an
aggregate, and how often periodic transmission
should take place.

The Mux Control Machine attaches the
physical port to an aggregate port™, using the
Selection Logic to choose an appropriate port,
and turns the distributor and collector for the
physical port on or off as required by protocol
information.

The Transmit Machine formats and transmits
LACPDUs as required by the Periodic
Transmission Machine and by other machines if
the partner's view of the actor's state is not
current. It imposes maximum transmission rate
limitations on LACPDUSs.

Protocol Time Constants

The following time constants are specified for
the protocol, and shall not be changed™ by
management or other means.

e Fast Periodic Time
e 1second
e Slow Periodic Time
e 30 seconds
e Short Timeout Time
e 3seconds
e Long Timeout Time
e 90 seconds
« Aggregate Wait Time'®
« 2 seconds®™

15 3) and b) are not the same.

16 Making the Mux Control Machine responsible for attaching and
detaching the physical port from an aggregate port, as well
controlling the collector and distributor, avoids having to duplicate
state from a separate Selection Machine. This is a proposed
change to D1.0. Here the selection logic, unchanged from D1.0, is
invoked by the Mux Control Machine.

7 The relationship of some of these values is important, and the
aim is to promote interoperability. Moreover these parameters do
not restrict the responsiveness of an implementation that focuses
on high availability, not should they prove onerously quick.

18 | believe this to be a more accurate name than ‘Selection Wait
Time', used in D1.0.

19 Given as 5 seconds in D1.0. | can't recall the logic behind that
but | now believe it is too long.

Protocol Variables

The following variables model an implementation
of the protocol. Conformance to the protocol is
purely in terms of observable protocol and
management operations, so an actual
implementation may hold the data described in
any it chooses.

Aggregate Ports

The following variables are logically associated
with each aggregate port. This note describes
LACP implementations that have an 9gregate
port available for each physical port™®, and a
single key value that applies to both the
aggregate port and the physical port. For these
implementations it is not necessary to record
these variables separately from those recorded
for the physical port.

e Aggregator MAC Address

* Aggregator Actor Port Priority21 and Port
Number

» Aggregator Actor System Priority and
System ID

* Aggregator Actor Key

e Aggregator Partner Port Priority and Port
Number

e Aggregator Partner System Priority and
System ID

e Aggregator Partner Key
» Aggregator Aggregation Flag

e True for an Aggregate that may include
more than one physical port, False for
an Individual link.

Physical Ports

The following variables are associated with each
physical port.

e Actor’s Port Priority and Port Number
» Actor’s System Priority and System ID
e Actor’'s Operational Key

e Actor's Admin Key

« Actor's Operational Status®

* Actor's Admin Status

2 See the description of the Selection Logic and selection rules.
21 This and the following variables comprise the LAG ID for the
aggregate port.

22 Note that the state of the Periodic Machine (see below) does
not appear in this list. The actor's and partner's operational status
hold all the information required.

Rev. 4.0 Saturday, March 7, 1999

e Partner’s Operational Port Priority and Port
Number

¢ Partner's Operational System Priority and
System ID

e Partner’s Operational Key
e Partner’'s Operational Status

« Partners Admin®® Port Priority and Port
Number

e Partner's Admin System Priority and System
ID

e Partner's Admin Key
e Partner's Admin Status

« Receive Machine State : Rxm_current,
Rxm_expired, Rxm_defaulted,
Rxm_disabled

» selected : True if the Selection Logic has
selected an aggregate port since the LAG ID
last changed

e matched : True if the protocol partner has
matched the actor’s half of the IAG ID**

e aggregate : True if the link can be
aggregated with others, False if it has to be
an individual link.

* Aggregate Port : An identifier for the
aggregate port that the physical port is
attached to or desires to be attached to®.
May be null if none is available.

e attach : True if Mux Control logic has
instructed local system resources to attach
to the aggregate port.

e attached : True if the local system resources
have attached the physical port to the
aggregate port.

e attach_when : Count of the number of
seconds before the physical port may be
attached to an aggre%ate port. Initial value
Aggregate Wait Time

e ntt: True if a transmission is required.

« hold_count®” : The number of LACPDUs
transmitted since hold_while was initialized,
a new request for transmission is held if this
is not less than the maximum number of
transmissions allowed in a hold_while
interval (one second)

e hold_while : Count of the number of seconds
(initialized to 1 when started) of the number
of seconds before the hold_count is reset.

23 Referred to as ‘Default’ rather than ‘Admin’ in D1.0.

2 Detailed description below.

25 Should correspond to 30.7.2.9 aAggPortCurrentAgglD in D1.0.
26 Between them attach, attached, and attach_when encode D1.0
30.7.4.5 aAggPortDebugSelectionState.

27 Together hold_count and hold_while limit the maximum
LACPDU transmission rate as required by D1.0, however the
particular way this is done should be left up to individual
implementations.

Receive Machine and Match Logic

The Receive Machine extracts the following from
each received LACPDU:

« LACPDU Actor Port Number®®

e LACPDU Actor System ID

e LACPDU Actor Key

« LACPDU Actor Aggregate flag”

and compares™ this information with that already
recorded as the:

« Partner®”’s Operational® Port Number
* Partner’'s Operational System ID

e Partner’'s Operational Key

* Partner’'s Operational Aggregate flag

These may have been extracted from a
previously received LACPDU™, or may be
administrative defaults supplied by management
of the actor. If the information has changed a
new protocol partner has been detected and ‘not
selected’ is signaled to the Se_lectig>4n Logic by
fs<—:itt|r13(“;’136the shared state variable™ selected
alse™".

32
I

28 Throughout this description the Port Numbers and System IDs
are treated as containing their priority components. This simplifies
the description and the protocol, as there is no need to describe
the priority components except in the management sections. It
does have the effect that a change in a priority component is
treated as if a different identifier was being used. Management
changes of priority are envisaged to be so rare that this should not
present a problem. It is important that this approach (or its
converse) be made explicit in P802.3ad. As described here it
would be possible to “borrow” from the priority space to enlarge
the identifiers.

2 Encoded as part of the Actor's State, see below.

30 This comparison could be done later, by the Selection Logic, at
the cost of maintaining a separate copy of this information for
currently selected aggregate.

31 The “partner” referred to here was the transmitter of the LAC
PDU, so of course this the actor's information in the PDU.

32 These values are referred to as “Operational” because they are
the values used by the remainder of the protocol machine, and
reflected back to the partner. Each “operational” value has a
corresponding “Administrative” or “Admin” value. These hold the
administrative defaults set by management. In the D1.0
management sections an incomplete mix of “Oper” and “Default’
variables are present. | suggest we remove the latter and have a
complete administartive set. This is consistent with the way that
the proposed receive machine uses the administrative (values).
33 Only information from the last LACPDU is ever recorded.

34 As per 802.3 state machine conventions.

3 This informs the Selection Logic that the partner is no longer
using the previous LAG ID.

36 This will cause the Mux Control Machine to detach the physical
port from its current aggregate port, and (eventually) select a new
aggregate appropriate for the new partner. This has to happen
after the new protocol information is available. The description
given here is adequate if the machines operate atomically (as per
the 802.3 conventions), or sequentially completing the processing
of each event before another machine runs.

Rev. 4.0 Saturday, March 7, 1999

The operational Port Number, System ID, Key,
and Status information for the partner is then
updated __with the information from the
LACPDU".

The Receive Machine extracts the following from
each received PDU:

* LACPDU Partner Port Number

« LACPDU Partner System ID

e LACPDU Partner Key

* LACPDU Partner Aggregate Flag

and compares this information with that recorded
as the:

e Actor’'s Operational Port Number

* Actor’s Operational System ID

e Actor’'s Operational Key

« Actor’'s Operational Aggregate flag

If this comparison succeeds® or if the Partner’s
Operational Aggregate flag is false®®, the Match
Logic considers the partner to have matched the
actor's LAG (link aggregation group) identifier
and signals that to the mux control logic b(y
setting the shared state variable matched™.
Otherwise matched is reset.

Additionally, if the partner Port Number, System
ID, Key, or Status do not match the operational
information held for the actor, ‘need to transmit’
is signaled to the Transmit Machine by setting
the shared state variable ntt to true.

Following receipt of a valid LACPDU, the
Receive Machine enters the Current state. The
LACP Timeout flag in the Actor's Operational
Status is set to the value in the Actor's
Administrative Status™, and the current while
timer™ started or restarted with an initial value
of Short timeout or Long timeout as
appropriate.

If the current while timer expires, the Receive
Machine enters the Expired state, and the

37 This is the actor's information in the PDU, see a previous
footnote.

38 The protocol partner knows all about the actor so the actor can
safely aggregate the link.

39 The only way the link can be used is as an ‘individual link’ i.e.
as an aggregate of one, so it does not matter if the partner has the
actor's full details yet.

40 D1.0 distinguishes a ‘matched individual’ from a ‘matched
aggregate’, this is unneccessary since the aggregate selection
provides the necessary selection. This simplification is made
possible because the introduction of the administrative (default)
parameters for the partner means there are always partner
operational parameters, so the individual/aggregate distinction
does not need to be captured by the match logic.

41 Recovering, if necessary, from temporarily advertising Short
timeout in the Expired state.

42 The receive machine uses a single timer.

43 Throughout this description timers are described as down
counters which expire when they reach zero.

current while timer is restarted with an initial
value of Short timeout. The Actor's Operational
LACP Timeout flasg is set to Short timeout™, as
is the Partner's”™. The shared state variable
‘matched’ is reset to signal ‘not matched’ to the
Mux Control Logic.

If the current while timer expires in the Expired
state, the Receive Machine enters the Defaulted
state. The Partner’s Operational Port Number,
System ID, Key, and Status are set to the
Partner's Administrative values, and ‘matched’ is
set.

Any change to the actor's or partner's
operational LACP Active or LACP Timeout flags
causes the Periodic Machine to reevaluate its
current state™.

The LACP Entity is generally managed b
changing the actor's and partner’s
Administrative rather than Operational
parameters. The following are always updated
immediately, so there is no need for visibily
different administrative and operational states:

+ Actor's Port Number*

« Actor's System ID*°

« Actor's Operational Status™ :
e LACP_Activity
e LACP_Timeout

44 This should prompt the partner to transmit before the
Rxm_expired state is left. This is most important on initialization.
45 Ensuring that the actor will transmit rapidly throughout the short
duration of the Expired state. Assuming that the partner's
operational LACP_Timeout is short stimulates rapid transmission
initially to discover a partner rapidly while allowing for a slow
periodic rate in the steady state to ensure that no partner changes
are missed.

46 Since the 802.3 state machine conventions specify that a state
block continually evaluates its exit conditions until one is specified
(802.3-1998 Clause 21.5.1) no formal signaling to the Periodic
Machine is required, the later merely needs access to the relevant
data. However this subtlety might well be lost on software
engineers unfamiliar with the 802.3 conventions, hence the above
note. By the same argument, if the Receive Machine stored a
complete copy of the received LACPDU there would be no need
for any explicit inter machine signalling at all. Moreover since
each machine is deemed to execute atomically there would be no
need to guard sections where several shared variables are
changed together. This is not a satisfactory basis for a trouble free
specification for the target audience, more used to optimizing
execution for use of a single sequential processor, or at the other
extreme coping with preemptive interleaved execution.

47 By which | mean the parameters local to the actor that claim to
represent the Partner's Administrative state, not the parameters
held by the partner itself.

48 Including a priority component, which may the only part
manageable by a network administrator.

49 Including a priority component which may be the only part
manageable by a network administrator.

50 Although there is no need for separate administrative and
operational values for these flags, it proves convenient to treat the
State flags as a whole for management. Thus there are
Operational and Administarive versions of the Actor’s State.

Rev. 4.0 Saturday, March 7, 1999

The Actor’s Operational Key may be varied by an
implementation to deal with aggregation
constraints not easily represented by a Key
value. A simple implementation will keep
Operational and Administrative values the
same™".

The Aggregation flag in the Actor’'s Status is not
directly manageable but is a consequence of key
management : it is reset if the port has a unique
key. The Synchroniz&_)aéltion, Collecting, Distributing
and reserved flags™, are not manageable but
are set as a consequence of protocol operation.
Following changes to the actor’'s Port Number,
System ID, Operational Key, or Aggregation flag,
‘not selected’ is signaled to the Selection Logic,
‘out of sync’ to the Mux Control Logic, and ‘need
to transmit’ to the Transmission Machine.
The following operational parameters are only
updated fgom their corresponding
administrative™ versions if the Receive Machine
is in the Defaulted state, and on first initializing
the Receive Machine:
« Partner's Operational Port Number>*
* Partner’'s Operational System ID
« Partner’s Operational Key
« Partner's Operational Status™ :

e LACP_Activity

e LACP_Timeout

e Aggregation

e Synchronization

e Collecting

+ Distributing and Reserved bits*®

51 Such a simple implementation can still deal with the simpler
form of aggregation constraints, such as having a maximum
number of physical links in a given aggregate. A more complete
description of constraints and rules for changing keys will be
added to this document.

52 Bits 6 and 7 of the State octet. This are transmitted as 0 in the
Actor's state, unchecked on receipt, and reflected in the Partner
State octet in LACPDUSs.

53 |n P802.3ad D1.0 Clause 30 these are called xxxDefaultxxx
while the operational versions lack the designattion Operational.
Unless there is some established convention against such a use
of administrative and operational | believe there it is clearer to use
xxxOperxxx and xxxAdminxxx for these parameters.

% A default version of this parameter is missing from D1.0, it is
required to resolve simple aggregation constraints and can serve
as a useful check that the link leads to the expected port on the
partner system.

% Allowing the administrative values of these flags to be set and
brought into play in the Defaulted state offers a wider range of
useful behaviors than specified in D1.0, including continuing or
discontinuing LACP_Activity in the Defaulted state (requires that
the Actors’s LACP_Activity is False), transmitting LACPDUs on a
frequent or an infrequent basis, and having the link be active in
an aggregation or not. The Periodic Transmission machine is
simplified since it just takes note of the current settings of
LACP_Activity and LACP_Timeout and not of any changes in
Receive Machine state.

If the physical port's MAC is disabled, the
Disabled’ state is entered. The previous
Partner’s Operational Port Number, System ID,
Key and LACP_Activity are retained, but
‘matched’ is reset. The current_while timer is
stopped if running. The Receive Machine is
initialized in the Disabled state.

If the physical port's MAC is subsequently
enabled, the Actor’'s Operational LACP Timeout
flag is set to Short timeout™, as is the Partner’s,
and the Expired state is entered, restarting the
current_while timer with an initial value of Short
timeout.

Receive State Machine Description

This section presents a more formal description
of the Receive Machine, introduced informally
above.

Receive Machine States and Timer

The receive machine has four states, other than
those implied by the stored data previously
described:

e Rxm_current

e Rxm_expired

¢ Rxm_defaulted
« Rxm_disabled

a single timer, the current while timer that is
started in the Rxm_current and Rxm_expired
states with an initial value™ of either”":

e Short timeout
or
e Long timeout

depending on the value of the Actor's
Operational Status LACP_Timeout, as
transmitted in LACPDUs.

Receive Machine Events
The following events can occur:
« participant created or reinitialized®*

% No actions are taken as the result of these but it is easier to
view the update process as picking up the entire state thatn just
parts of it since there is no difference. This allows for the fact that
the rserved bits may have some future meaning.

57 This was previously described as a variation on the Expired
state with the current while timer not running, this seems a cleaner
description, particularly bearing in mind the need to translate to
802.3 conventions.

%8 This should prompt the partner to transmit before the
Rxm_expired state is left. This is most important on initialization.
% Throughout this description timers are described as down
counters which expire when they reach zero.

60 The values of these timeouts are set by the protocol
specification; they are not changed by implementations or network
administrators except to select the short or long value.

6 This is a management event whose purpose is to restore the
protocol entity to its initial state gracefully without dropping any
loose ends. Typically protocol descriptions omit the specification

Rev. 4.0 Saturday, March 7, 1999

* received LAC PDU

* physical MAC enabled

e physical MAC disabled

» current while timer expiry

The physical MAC disabled event indicates that
either or both of the physical MAC transmission
or reception for the physical port associated with
the actor have become non-operational.

The received LAC PDU event only occurs if both
physical transmission and reception are
operational, so far as the actor is aware™.

Receive Machine Actions

The receive machine and match logic can take
the following local actions:

e record partner operational parameters from
received LACPDUs

e update partner operational parameters from
partner administrative parameters

e« set the partner and actor's operational
LACP_Timeout to Short timeout

e set the partner and actor's operational
LACP_Timeout to their administrative values

+ start the current while timer
* reset the ‘selected’ shared state variable

e set or reset the ‘matched’ shared state
variable

¢ signal need to transmit to the Transmit
Machine by setting the ntt shared state
variable.

of basic management operations thus inviting implementation
problems. We attempt to avoid this mistake.

62 This removes the need for the receive machine to explicitly
track the physical MAC operational states.

Receive State Machine

timeout = Short,
current_while =
Short_timeout, matched
= False,

= False, partner oper =
partner admin,

matched = True,
Rxm_defaulted

Rxm_current | Rxm_expired | Rxm_defaulted | Rxm_disabled
create or current_while = Stopped,
reinitialize, physical partner oper = partner admin,
MAC disabled selected = False, matched = False
Rxm_disabled

physical MAC actor oper timeout =
enabled Short , partner oper

timeout = Short,

current_while =

Short timeout,

Rxm_expired
physical MAC current_while = Stopped, X
disabled matched = False,
Rxm_disabled
receivedLACPDU if (pdu actor != partner oper) selected = False
matched = (pdu partner == actor oper) || !pdu actor aggregation X
if (pdu partner != actor oper) nit = True
partner oper = pdu actor
current_while = actor oper timeout = actor admin timeout
Rxm_current

current_while timer | actor oper timeout = if (partner oper 1=
expiry Short , partner oper | partner admin) selected X

Rxm_expired

Periodic Transmission Machine

This machine establishes the desire of the
participants to exchange LAC PDUs periodically
to maintain an aggregate, and how often periodic
transmission should occur.

The machine has three states, simply
determined by the Actor's Operational
LACP_Activity flag and the Partner’'s Operational
LACP_Activity, and LACP_Timeout flags:

¢ No_Periodic transmission
e Fast_Periodic transmission
e Slow_Periodic Transmission

These control the use and initial value of a single
timer, the periodic transmission timer. This
stimulates periodic transmissions to ensure that
the actor's information is not timed out by a
protocol partner, and, if the actor is active, to
discover a new partner.

Periodic exchanges® will take place if either
participant so desires™. If both the actor and the

63 This machine only governs periodic transmission. If
management operations cause both participants to be passive,
there may be exchanges that need to take place to move the
physical port gracefully to an individual link. These will occur and

Rev. 4.0 Saturday, March 7 1999

partner are passive LACP it is No_periodic.
Otherwise transmissions occur at a rate
determined and communicated by the receiving
participant (or assumed for such a participant). If
the partner’'s is using a Short Timeout, the
machine’s state is Fast_Periodic, and the timer
is restarted on expiry with an initial value of Fast
Transmit. If the partner is using a Long Timeout,
the machine’s state is Slow Periodic, and timer’s
an initial value is Slow Transmit.

LAC PDU transmissions will stop only when the configuration has
reached a steady state.

64 If the protocol were to be extended to shared media, periodic
exchanges would take place if any participant so desired and at
the fastest rate desired by any participant.

Selection Logic

The selection logic chooses the aggregate port
for the physical port. It determines the Link
Aggregation Group ldentifier (LAG ID) for the
physical port, and finds the® aggregate port with
the same LAG ID.

If both the actors and its partner's Operational
Aggregation flag®® are set, the LAG ID
comprises the actor's Operational System ID
and Key, and the partner's Operational System
ID and Key”’'. However if the partner’s System ID
and Key are the same as the actor’s, the link is
always treated as ‘Individual’ as follows®®.

If either Aggregation flag is reset,
communicating ‘Individual’, the LAG ID
compnsegs the Actor’'s Port Number System ID,
and Key

The default rules for aggregate port selection:

a) do not require additional MAC addresses to
those provided by the physical MACs

b) are deterministic (history independent)
assigning physical ports to aggregate ports

¢) should match the users’ intuition in the trivial
cases where individual links result™.

They are also compatible with an alternative
view of link aggregation as physical ports
bonding together, rather than of physical ports
attaching to aggregate ports.

These rules are not required by the protocol™,
which can accommodate greater flexibility in the
relationship of aggregate and physical ports

85 There will never be more than one, although there may be
none. Hopefully the latter case is temporary.

8 By introducing administrative defaults we have ensured that
operational information for the partner is always present, so there
is no longer any need to call out ‘Selected as Aggregate’ or
‘Selected as Individual' explicitly.

67 By convention this is written with the participant with the lower
numbered System ID first.

68 Otherwise two ports on the actor, connected by a link, would be
aggregated together and produce an accidental loopback.

69 And the only aggregate port that can be selected according to
the rules proposed below is that naturally associated with the
physical port. In this case the ‘global’ LAG ID is the concatenation
of this value with the partner information.

70 Important when introducing the protocol when customers may
be sceptical as to its value because it is not implemented in all
attached devices. Counter intuitive behavior of systems
conforming to the standard, but not providing additional
functionality in this period, would be a significant negative.

™ Except that interoperability requires that the same link s are
held as ‘standby’ by two participants if both of them have
constraints on the links that can be aggregated beyond those
easily expressed by a key value.

72 The default rules shall be implemented, additional rules that
tradeoff determinism for greater resiliency are optional. As a
practical matter, it is necessary to have one commonly understood
set of rules, with the properties described, to ensure acceptance
of link aggregation.

Rev. 4.0 Saturday, March 7 1999

Under these rules:

e Each physical MAC has (comes equipped
with) both a physical port and aggregate
port.

e Every physical port always has one
aggregate port selected at any point in time.

e A physical port that is operating as an
individual link always selects, and has first
claim on its own aggregate port.

* A number of physical ports in an aggregate
always select the lowest numbered port” for
their aggregate port. The corresponding
physical port may not be in a state that
allows data to be transferred on its physical
link but it has selected that aggregate port.

The following diagrams illustrate the rules.
Figure 1 shows a valid configuration and Figure
2 an invalid one.

Port Port Port Port

Aggregate Ports

%\D []
o

Physical Ports

Selected

Selected and attached
(data transfer subject to mux control)

Figure 1

Port Port Port

Aggregate Ports |;|
Phv=" orts d)

Figure 2

Where there are constraints on attachment,
such as a maximum number of physical ports in
an aggregate, the Selection Logic also
determines the relative priority of the physical
ports for attachment to the aggregate port

73 An arbitrary rule of course.

When the selection logic has chosen an
aggregate port it sets the shared state variable
selected true to signal to the Mux Control
Machine.

The Receive Machine will reset ‘selected’ if the
LAG ID being cammunicated by the protocol
partners changes™. This may be because a
LACPDU with new partner information has been
received, the default (administrative) partner
parameters have been selected, or these or the
actor's parameters have been changed by
management.

If the selection parameters for a given physical
port are changed, other ports in the system may
have to reselect their aggregate ports’”.

The selection logic is invoked by the Mux Control
machine, whenever a physical port is not
attached to and has not selected an aggregate
port”.

Mux Control Machine

The mux control machine attaches and detaches
a physical port to and from an aggregate ports,
and turns the distribution and collection on or off
as required by the selection and match logic.

LACP accomodates a wide range of possible
implementations, system constraints, and local
representations of mux state. However for
protocol purposes an actor’s operational state
can be summarized in three flags:

e Synchronization

™30 it no longer corresponds to the previous selection. Selected
is reset even if the same aggregate port will be chosen again, the
receive machine cannot always know, not does it try to optimize
particular cases. This means reselection will take place whenever
the partner changes so it may be used as an indication to
management functions concerned with peer authorization and
related matters. To do otherwise would run the risk of link
aggregation failing to preserve the desirable port down up
characteristics of physical links.

75 The search for other ports that may have to select the same
aggregate can be narrowed significantly. Unless the local key has
changed it can be restricted to those ports with a matching key.
Further if the port whose parameters have changed was not the
lowest numbered port in its previous selection and is not the
lowest numbered in its new selection it will not affect the choice of
aggregate port by other physical ports.

6 When ‘not selected' is signaled by the Receive Machine, the
Mux Control Machine has to first turn off collection and
distribution, and detach the physical port from the current
aggregate port. That being done it can invoke the selection logic
to select a (possibly) new aggregate port. The Mux Control
Machine may delay a new attachment to minimize aggregate port
user disruption. The wait_while timer described in D1.0 serves this
function. This description moves it to the Mux Control Machine.
Since its value is system dependent and does not affect protocol
correctness (the Synchronization flag ensures that) it is probably
better to allow the Mux Control machine to insert such a delay
without specifying the precise mechanism and controls upon it in
the standard.

Rev. 4.0 Saturday, March 7, 1999

¢ In_Sync, if the physical port is attached
to the aggregate port last chosen by the
selection logic and the state variable
selected is still true

« Out_of Sync’’ otherwise

e Collecting, true if any user data frames
received on the link will be collected and
delivered to the user of the aggregate port

« Distributing”®, true if any user data frames
transmitted by the user of the aggregate port
may be transmitted on the link.

And the operation of the mux is best specified in
terms of the goals for attaching and detaching,
collecting and distributing, given the above and
the output of the match logic.

If the actor’'s mux is Out_of_sync or the partner’s
match is Out of sync, then both collector and
distributor should be turned off.

If the actor’'s mux is In_Sync and the partner’s
match is In_Sync, then the collector should be
turned on.

If the actor’'s mux is In_sync, the partner’'s match
is In_sync, and the partner’'s collector is turned
on, then the distributor should be turned on.

If the mux hardware is coupled, i.e. forces the
distributor to turn on when the collector is turned
on then the above rules also apply.

If the mux hardware is independent, i.e. not
coupled, then if the partner’s collecto7r9 is turned
off, the distributor should be turned off"".

If the actor is ‘not selected’® but attached to an
aggregate port, it shall be detached. A physical
port shall not be attached to an aggregate port
with attached physical ports that are ‘not
selected’, i.e. are in the process of being
detached®®. The mux control machine may
further delay reattachment of a physical port to a

7 For example the hardware may not have yet responded to
changed protocol information and be Out_of_Sync, but Collecting,
in which case the partner better not transmit any frames because
they will be misdelivered.

78 Not required by the state machines described in this note, but
strictly specified in case new machines may use this in the future,
this information is in any case useful for debug.

79 While graceful removal of a link from an aggregate is not
currently specified this behavior supports managing that graceful
removal from one end of the aggregate without having to invoke
higher layer coordination.

80 In which case it will be ‘Out of Sync'.

81 To prevent misdelivery. . This rule also ensures that a change
of partner does bring the aggregate port down even if there are
hardware switching delays which might allow new additions to the
port just after a change of partner to keep the port up

82 The machine thus accomodates hardware delays, though there
is no requirement to delay artificially. Although a description at this
level of detail is necessary to explain what the higher level
protocol user of the aggregate port may see, and to validate the
protocol's fitness for deployment across a wide range of
hardware, this detail is not communicated in the protocol. This
allows both “instantaneous” and more convoluted
implementations to be accomodated by the protocol.

10

new aggregate port by up to Aggregate wait
delay after the last selgggLon of that aggregate
port by any physical port™™"".

The following table illustrates these rules for a
hypothetical independent mux hardware
implementation only capable of supporting one
action at a time.

Partner Actor’'s Actor’'s Action
Match Mux Target
Mux
State

S| a|S|e|&g|le|T

o | 5| 8| 5| &| 5| &
1 /12 (1 |1 |1 |1 |1 -
1 |1 (1 |1 (0 |1 |1 |en.dist,
1 (1 (1 (0 (X (1 (1 |[en.coll
1 | X |0 |[X |1 |0 |0 |dis.dist.
1 | X |0 |12 (0 |0 |0 |dis.coll.
1 |X |0 |0 |0 |0 |0 |repairsync
1 (0 (1 (1 (1 |1 |0 |[dis.dist.
1 |0 |1 |1 |0 |1 |O -
1 (0 (1 (0 (1 (1 [0 |[en.coll
1 |0 (1 |0 |0 |1 |0 |en.coll
0 |[X |[X |[X |1 |0 |0 |dis.dist.
0O |[X |[X |1 |0 |0 |0 |dis.coall
0O |X |1 |0 |0 |0 |O -
0 [X |0 |0 |0 |0 |O |repairsync

83 This is what the wait_while timer in D1.0 does.

8 Thus minimizing thrashing of the higher layers due to the timing
out of LACPDUs or the arrival of new information at slighlty
different times. Avoiding thrashing is important since port up
events may consume considerable numbers of buffers for initial
protocol use.

Rev. 4.0 Saturday, March 7, 1999

Rearranged, to collect rows with the same action
together this table becomes:

Partner Actor’'s Action
Match Mux
sleizlsls

Q Q 5

«

1 1 1 1 1 -
110 |1 |1 |0 -
0 | X |1 |0 |O -
1 |1 |1 |1 |0 | enabledistributor
1 (1 (1 |0 | X | enablecollector
1 |0 |1 |0 |1 | enablecollector*
1 |0 |1 |0 |0 | enablecollector
1 | X |0 | X |1 | disable distributor
1 (0 (1 |1 |1 | disable distributor
0 | X | X | X |1 | disable distributor
1 [X |0 |1 |0 | disable collector
0O | X | X |1 |0 | disable collector
1 | X |0 |0 |0 |repairsync
0 | X |0 |0 |0 | repairsync

Transmit Machine

Need To Transmit

The Transmit Machine transmits a properly
formatted LACPDU within a Fast transmit time
following the signaling of a need to transmit from
another protocol machine.

Hold Timer and Count

The transmit machine limits the maximum
transmission rate of the Protocol participant to no
more than 3 LACPDUs® in a Fast transmit (one
second) interval. If a need to transmit signal
occurs when such limiting is in force the
transmission is delayed.

85 Sufficient to establish an aggregate in the worst case when
initial LACPDUs from the participants cross.

11

Simulation

The following files comprise the core of a model implementation. So far this has been used to simulate a
number of simple test cases, so no claims of correctness, fithess for purpose, warranty, support etd. are
being made. However they may help the C-literate reader understand some of the implications of the
LACP design.

Rev. 4.0 Saturday, March 7 1999 12

/* lac_types. h 1.10.000 07MARQ9 03:22 */
#i f ndef lac_types_h
#def i ne lac_types_h_

#i ncl ude "sys. h"
#i nclude "l ac_options. h"

/**

* LAC : LINK AGGREGATI ON CONTROL PROTOCCL : PROTOCOL DATA

Rk S S I Rk R I b o I O S R I R S b o R R Rk kb O R R R o S kb R

*

/

typedef int System priority;
typedef int System.i d;

enum {Null _system

enum {Nul'l _port
typedef Port_no Key;

enum {Nul'l _key = (Key) 0};

(System.id)0};
(Port _no) 0};

typedef enum {Short tineout = True, Long_tinmeout = Fal se} Lacp_tineout;
typedef struct /* Lac_state */

unsi gned | acp_active
unsi gned | acp_ti nmeout
unsi gned aggregation
unsi gned synchroni zati on
unsi gned col l ecting
unsi gned distributing
unsi gned reserved_hit6
unsi gned reserved_bit7

} Lac_state;

RPRRPRRPERR

typedef struct /* Lac_info */
Port _no port_priority;
Port _no port_no;

Systempriority systempriority;

System.id system. d;
Key key;
Lac_state st at e;

} Lac_info;

typedef struct /* Lac_pdu */ /* only the relevant paraneters, unpacked */
Lac_info actor;
Lac_info partner;

} Lac_pdu;

/**

* LAC : LI NK AGGREGATI ON CONTRCL PROTOCOL : STATE MACH NE DATA

EIE IR R I kS O O S
*/
typedef enum {Rxm current, Rxm expired, Rxm defaulted, Rxm di sabl ed} Rx_nachi ne;

/**

* LAC : LINK AGGREGATI ON CONTROL PROTOCOL : SYSTEMS AND PORTS

EIE R R R I S O O S S R S O
*/

typedef struct |ac_nac Lac_mac;

typedef struct |ac_port Lac_port;

typedef struct |ac_system Lac_system

/**

* LAC : LI NK AGGREGATI ON CONTROL PROTOCCL : PHYSI CAL PORT | NSTANCES
Rev. 4.0 Saturday, March 7, 1999

13

Rk Sk I Rk R I b o I O R R Rk Sk S R Rk R R b o o R R o b S R R I b S R

*/

st

{

ruct

Lac_port
Lac_system
Port_no

Node
Node

Lac_info
Lac_info
Lac_info
Lac_info
Rx_machi ne
Ti cks

Bool ean
Bool ean
Bool ean

Ti cks

Lac_port
Lac_port
Bool ean
Bool ean
Bool ean
Bool ean
Ti cks

Bool ean
int

Ti cks
Ti mer

Ti mer

lac_port /* Lac_port */

*next ;
*system

port_no;
nmux;
mac;

act or;
part ner
actor _admin

partner _adnin

rXm

current_while

sel ect ed;
mat ched
aggr egat e;

peri odi c_when;

*aport;
*al i nk;

oper at i onal
att ach;

at t ached;

st andby;
attach_when;

ntt;
hol d_count;
hol d_whi | e;

t x_schedul er;

tick_tiner;

/'l aggregator may be taken out of service

//wait before attaching to sel ected aggregate port

)
/**

*

LAC :

LI NK AGGREGATI ON CONTROL PROTOCOL

SYSTEM

Rk Sk S R Rk R kO R Sk bk S b Sk Sk R R o S R R R o b R Rk Sk S b o S R

*

st

{/

)

/
ruct

*
*

*/

Lac_port

ports;

Systemopriority priority;

System.id

id;

#endif /* lac_types_h__ */

Rev. 4.0 Saturday, March 7, 1999

lac_system/* Lac_system */

14

/* | ac_machines. h 1.10. 000 O3MARQ9 03:21 */
#i f ndef | ac_machines_h_

#def i ne | ac_machines_h_

#i ncl ude "sys. h"
#i nclude "l ac_options. h"

/**

* LAC : LI NK AGGREGATI ON CONTRCOL PROTOCOL : STATE MACHI NES
EZE R R R I I kS O O S S R S I
*/

typedef enum/* Lac_event */

Lac_null = 0,
Lac_init,
Lac_ngt,
Lac_ti ck,
Lac_pnac_on,
Lac_recei ved,

Lac_pmac_of f,

Lac_new._i nf o, Lac_update
Lac_attach, Lac_attached
Lac_det ach, Lac_det ached

Lac_enabl e_col | ector,
Lac_di sabl e_col |l ector,
Lac_enabl e_di stri butor,
Lac_di sabl e_di stri butor,

Lac_col | ect or_on,
Lac_col | ector_off,
Lac_distributor_on,
Lac_distributor_off,

Lac_ntt, Lac_t xd
} Lac_event;
extern void rx_machi ne(Lac_port *port, Lac_event event, Lac_pdu *pdu);
extern void nux_control (Lac_port *port, Lac_event event);
extern void hw control (Lac_port *port, Lac_event event);
extern void churn_detection(Lac_port *port, Lac_event event);
extern void tx_machi ne(Lac_port *port, Lac_event event);
extern void tx_opportunity(Lac_port *port)

#endif /* lac_machines_h__ */

Rev. 4.0 Saturday, March 7, 1999

15

/* lac_rx.c 1.00. 000 28FEB99 21:05 */

#i nclude "l ac_options. h"
#i nclude "l ac_types. h"

#include "l ac_defaults. h”
#i nclude "l ac_nachi nes. h"

/************;***

* LAC : LI NK AGGREGATI ON CONTRCL PROTOCOL : RECEI VE, MATCH, & PERICDIC

Rk S S I Rk R I b o I O S R I R S b o R R Rk kb O R R R o S kb R

R *]

to->port _priority
to->port_no
to->systempriority
to->system.id

t o- >key
to->state.lacp_active
to->state.lacp_ti nmeout
t o- >st at e. aggr egati on
to->state. synchroni zation
to->state.collecting
to->state.distributing
to->state.reserved_bit6
to->state.reserved_bit7

from>port_priority;

from >port_no
from>systempriority;
from>system.id

from >key
from>state.lacp_active
from>state.l acp_ti meout;
from >state. aggregati on
from >state.synchronization
from>state.collecting
from>state.distributing
from>state.reserved_bit6
from>state.reserved_bit7

}
/* ___ */
static Bool ean same_info(Lac_info *a, Lac_info *b)
/*
{ iy
return ((a->port_priority == b->port_priority)
&& (a->port_no == b->port_no)
&& (a->systempriority == b->systempriority)
&& (a->system.id == b->system.id)
&& (a->key == b- >key)
&& (a->state.lacp_active == b->state.lacp_active)
&& (a->state.lacp_tinmeout == b->state.lacp_tineout)
&& (a->state.aggregation == b->st at e. aggr egati on)
&& (a->state.synchroni zati on == b->state. synchroni zati on)
&& (a->state.collecting == b->state.col | ecting)
&& (a->state.distributing == b->state.distributing)
&& (a->state.reserved_bit6 == b->state.reserved_bit6)
&& (a->state.reserved_bit7 == b->state.reserved_bit7)
)
}
2 * [
static Bool ean same_partner(Lac_info *a, Lac_info *b)
/*
{ iy
return ((a->port_priority == b->port_priority)
&& (a->port_no == b->port_no)
&& (a->systempriority == b->systempriority)
&& (a->system.id == b->system. d)
&& (a->key == b- >key)
&& (a->state.aggregation == b->st at e. aggr egati on)
)
}
2 * [
extern void rx_machi ne(Lac_port *port, Lac_event event, Lac_pdu *pdu)
{r>
*/

Bool ean need_to _transmt = Fal se;

switch (event)

{

case Lac_init:
copy_info(&port->partner_adm n, &port->partner);
port->sel ected = Fal se
port - >mat ched = Fal se;

Rev. 4.0 Saturday, March 7, 1999

port - >st andby = Fal se;
port->rxm = Rxm_di sabl ed;
port->periodi c_when = Stopped;

port->current_while = Stopped;
/* continue - sinulation does not turn pmac_on separately */

case Lac_pmac_on:

port->actor.state.lacp_tineout
port->partner.state.lacp_tinmeout
port->current_while

port->rxm

br eak;

Short _tineout;

Short _tineout;

Short _tinmeout _ticks;
Rxm _expi r ed;

case Lac_nygt:

br eak;

case Lac_prac_of f:

port->current_while = Stopped;
port->periodi c_when = Stopped;
port - >mat ched = Fal se;

port->rxm
br eak;

Rxm di sabl ed;

case Lac_tick:

/*

/*

/*

if (port->current_while != Stopped)
{ port->current_while--;
if ((port->current_while == Expired) && (port->rxm == Rxmcurrent))

current_while tiner expiry, Rxmcurrent */
port->actor.state.lacp_tineout Short _ti nmeout;
port->partner.state.lacp_tinmeout Short _ti nmeout;
port->current_while Short _ti meout _ticks;

port - >mat ched Fal se;

port->rxm Rxm _expi r ed;
}
else if((port->current_while == Expired) && (port->rxm == Rxm expired))
{

current_while timer expiry, Rxmexpired */

if (!sane_partner(&port->partner, &port->partner_admn))
port->sel ected = Fal se;

copy_info(&port->partner_admn, &port->partner);

port - >mat ched True;

port->rxm Rxm def aul t ed;

bl

if (port->periodi c_when != Stopped)

{ port->peri odi c_when--;
if (port->periodi c_when == Expired)
{

periodi c_when tinmer expiry */
t x_machi ne(port, Lac_ntt);

ol

br eak;

case Lac_received:

i f (!sanme_partner(&pdu->actor, &port->partner))
port->sel ected = Fal se;

port->nmat ched = same_part ner (&pdu- >partner, &port->actor)
| | (! pdu->actor. st at e. aggregation);

if (!sanme_info(&pdu->partner, &port->actor))
need to _transmt = True;

copy_i nf o(&du- >actor, &port->partner);
port->actor.state.lacp_tinmeout = port->actor_adm n.state.|lacp_ti meout;
port->rxm= Rxm.current;

if (port->actor.state.lacp_tinmeout == Short_tinmeout)
port->current_while = Short_timeout _ticks;
el se

Rev. 4.0 Saturday, March 7, 1999

17

port->current_while = Long_ti meout _ticks
br eak;

defaul t:
br eak;
}
if (port->actor.state.lacp_active || port->partner.state.lacp_active)
if (port->periodic_when == Stopped)
port->periodi c_when = Sl ow periodic_ticks;
if ((port->partner.state.lacp_tineout == Short_tinmeout) &&
(port->periodi c_when > Fast_periodic_ticks))
port->periodi c_when = Fast_periodic_ticks;
}
el se (port->periodic_when = Stopped);

mux_control (port, Lac_new._i nfo)
/* churn_detection(port, Lac_received); */

if (need_to_transmt)
tx_machi ne(port, Lac_ntt);

Rev. 4.0 Saturday, March 7, 1999

18

/* I ac_mux. c 1.10. 000 07MAR99 03:20 */

#i nclude "l ac_options. h"
#i nclude "l ac_types. h"

#include "l ac_defaults. h”
#i nclude "l ac_nachi nes. h"

/************;***

* LAC : LINK AGGREGATI ON CONTRCL PROTOCOL : MJX CONTROL & SELECTION LOG C

Rk S S I Rk R I b o I O S R I R S b o R R Rk kb O R R R o S kb R

*/
2 * [
static Lac_port *find_aport(Lac_port *port)
{
Lac_port *apO = &port->system >ports
Lac_port *ap = &port->system >ports
Lac_port *best = port;
while ((ap = ap->next) != ap0)
{
if((ap->actor.systemopriority == port->actor.systempriority)
&& (ap->actor.system.id == port->actor.system.id)
&& (ap->actor. key == port->actor. key)
&& (ap->partner.systempriority == port->partner.systempriority)
&& (ap->partner.systemid == port->partner.systemid)
&& (ap->partner. key == port->partner.key)
&& (ap->aggregate && port->aggregate)
&&((ap->actor.port_priority < best->actor.port_priority)
|| ((ap->actor.port_priority == best->actor.port_priority)
&&(ap->actor.port_no < best->actor.port_no)
)))
best = ap;
return(best);
2 * [
static void sel ect_aport(Lac_port *port)
{
Lac_port *apO = &port->system >ports
Lac_port *ap = &port->system >ports
port->aggregate =
(port->actor.state.aggregation & port->partner.state.aggregation)
&& (port->actor.systemid != port->partner.system.id);
port->aport = find_aport(port);
i f (port->aggregate)
port->attach_when = Aggregate_wait_ticks
el se
port->attach_when = Now
port->sel ected = True;
port->standby = Fal se
2 * [

static void select_standby_|inks(Lac_port *aport)
{/** This exanple inplenentati on constrains the nunber of actively **/

/** used links in an aggregate to two. *x/
Lac_port *p = aport;
Lac_port *ap = aport;
Bool ean local _priority = True
Lac_port *first_choice = NULL
Lac_port *second_choice = NULL

Port_no first_priority, second_priority, check_ priority;
Port _no first_port_no, second_port_no, check_port_no

if ((aport->partner.systempriority < aport->actor.systempriority)
|| ((aport->partner.systempriority == aport->actor.systempriority)
&& (aport->partner.systemid < aport->actor.systemid)

))

Rev. 4.0 Saturday, March 7, 1999

|l ocal _priority = Fal se;

first _priority
first_port_no

second_priority
second_port_no

do (p->standby = True); while ((p = p->alink) != aport);
do
.
if (p->selected)
if (local _priority)

check_priority
check_port _no

p->actor.port_priority;
p- >act or. port _no;

}

el se

{ o o
check_priority = p->partner.port_priority;
check_port_no = p->partner.port_no;

}

if ((check _priority < first_priority)
|| ((check_priority == first_priority)
&& (check_port_no < first_port_no)

))

second_priority
second_port_no
first _priority
first_port_no
second_choi ce
first_choice

first_priority;
first_port_no
check_priority;
check_port _no
first_choice

p

else if ((check priority < second priority)
((check_priority == second_priority)
&& (check _port_no < second port_no)

{

second_priority
second_port_no
second_choi ce

check_priority;
check_port_no
p

} })} while ((p = p->alink; 1= aport)

if (first_choice != NULL) first_cho
if (second_choice !'= NULL) second_cho
extern voi d nux_control (Lac_port *port,
/*
{ iy

Lac_port *p, *p0, *ap
Lac_state *as = &port->actor.state;
Lac_state *ps = &port->partner.state;
Lac_event hw event = Lac_null;

unsi gned actor_sync;

Bool ean need to _transmt = Fal se

switch (event)

case Lac_distributor_on
br eak;

case Lac_distributor_off:
as->distributing = Fal se;
/* need_to_transmt = True; */
br eak;

case Lac_col l ector_on
as->col l ecting = True;
need to_transmt = True

Rev. 4.0 Saturday, March 7, 1999

ce->standby = Fal se;
i ce->standby = Fal se;

Lac_event event)

20

br eak;

case Lac_col lector_off:
br eak;

case Lac_tick:
if (port->attach_when != Now)
port->attach_when--;
br eak;

case Lac_init:
port->sel ect ed Fal se;
port->aggregate = Fal se;
port->aport = port; port->alink = port;
hw _control (port, Lac_init);
as->distributing = as->collecting = Fal se;
port->attach = port->attached = port->sel ected = Fal se;
return;

case Lac_det ached:
port->attach = port->attached = Fal se;

ap = port->aport;

if (port !'= port->aport)

{/** remove fromalink ring of current aport **/
p = port->aport;
while (p->alink !'= port) p = p->alink;
p->al i nk port->alink;

port->alink port;
port->aport = port;
}
if (ap->sel ected)
{/** reevaluate standby selection for all ports attached to the *x
/** old aport, and send an event to each of these, since the *x

/** detaching port may have been the obstacle to new attachments. **/
sel ect _standby_l i nks(ap);

p = ap;

do nux_control (p, Lac_update);

while ((p = p->alink) != ap);
}

br eak;

case Lac_attached:
port->attached = True;
br eak;

case Lac_new_ i nfo:
if (!port->selected)

{/** check to see if any other ports will have to change their *x
/** port. This check could be confined to ports with the same key **/
/** (before or after the information change) and to ports which *x
/** had previously selected this port as their aggregate port, or *x
/** will do so now. *x/

p = p0 = &port->system >ports;
while ((p = p->next) != p0)
{

if (p->selected & (p->aport !'= find_aport(p)))
{

p- >sel ected = Fal se;
mux_control (p, Lac_update);

Pl o

br eak;

case Lac_updat e:
br eak;

Rev. 4.0 Saturday, March 7, 1999

defaul t:
br eak;
}

actor_sync = port->selected && !port->standby
&& port->attach && port->attached
if (as->synchronization != actor_sync)

as->synchroni zati on = actor_sync;
need to_transmt = True

}

if (port->matched && ps->synchronization && ps->collecting
&& as->synchronization
&% as->collecting & !as->distributing)

{
as->di stributing = True;
/* need_to_transmt = True; */
hw_event = Lac_enabl e_distri butor;
} else

if (port->matched && ps->synchronization
&& as->synchronization
&& !as->col | ecting)

{
hw_event = Lac_enabl e_col |l ector;
} else
if (('port->matched || !ps->synchronization || !ps->collecting
|| 'as->synchronization)
&& as->distributing)
{
hw_event = Lac_di sabl e_distri butor;
} else
if ((!port->matched || !ps->synchronization
|| 'as->synchronization)
&& as->col |l ecting)
{
as->col l ecting = Fal se;
need to_ transmt = True
hw_event = Lac_di sabl e_col | ector
el se

if ((!port->selected || port->standby) && port->attach && port->attached)
{

port->attach
hw_event

Fal se;
Lac_det ach;

}

if (hw_event != Lac_null)
hw_control (port, hw event);

if (I port->attach && !port->attached
&% !port->selected
&% (port->alink == port)

{/** now detached with no other ports attaching **/
sel ect _aport (port);

if (port !'= port->aport)

{/** insert into alink ring of selected aport, and reeval uate **/

/** standby selection for all ports attached to the aport. *x
port->alink = port->aport->alink

port->aport->alink = port;

sel ect _standby_l i nks(port->aport);

p = port->aport;

do nux_control (p, Lac_update)

while ((p = p->alink) != port->aport);

Pl
if (I port->attach && !port->attached
&% port->selected & !port->standby && (port->attach_when == Now)
)

Rev. 4.0 Saturday, March 7, 1999

{ [/** check for detaching or waiting ports ... **/
p = port->aport;
while ((p->selected) && (p->attach_when == Now)
&& (p = p->alink) != port->aport)
{}

if (p == port->aport) /* if none, attach all detached ports in alink */
do
.
if (!I'p->attach && !port->standby)
{

p->attach = True
hw _control (p, Lac_attach)

}
} while ((p = p->alink) !'= port->aport);

if (need_to_transmt)
tx_machi ne(port, Lac_ntt);

Rev. 4.0 Saturday, March 7, 1999

/* lac_tx.c 1. 00. 000 28FEB99 21:06 */

#i ncl ude "sys. h"

#i nclude "l ac_options. h"
#i nclude "l ac_types. h"
#include "l ac_defaults. h”
#i ncl ude "l ac_nmachi nes. h"

/**

* LAC : LI NK AGGREGATI ON CONTRCL PROTOCOL : LACPDU TRANSM SSI ON

EE R R I S I O O

*/

static void copy_info(Lac_info *from Lac_info *to)
*

{/*/
to->port _priority
to->port_no
to->systempriority
to->system.id
t o- >key
to->state.lacp_active
to->state.lacp_ti nmeout
t o- >st at e. aggr egati on
to->state. synchroni zation
to->state.collecting
to->state.distributing
to->state.reserved_bit6
to->state.reserved_bit7

from>port_priority;

from >port_no
from>systempriority;
from>system.id

from >key
from>state.lacp_active
from>state.l acp_ti meout;
from >state. aggregati on
from >state.synchronization
from>state.collecting
from>state.distributing
from>state.reserved_bit6
from>state.reserved_bit7

static Bool ean tx_| acpdu(Lac_port *port)
{
Lac_pdu *pdu
if (sysmalloc(sizeof (Lac_pdu), &pdu))
{

copy_i nf o(&port - >act or, &pdu- >act or)
copy_i nfo(&port->partner, &pdu->partner);

sys_t x(&port->mac, pdu);
return(True)

Rev. 4.0 Saturday, March 7, 1999

extern void tx_machi ne(Lac_port *port, Lac_event event)

{
switch (event)
{
case Lac_init:
port->ntt = True;
port->hol d_while = Expired;
port->hol d_count = Zero;
br eak;
case Lac_ntt:
port->ntt = True;
br eak;
case Lac_tick
if (port->hold while != Expired)
{
if (port->hold while-- == Expiring)
port->hol d_count = Zero;
}
br eak;
case Lac_txd
port->hol d_while = Tx_interval _ticks;
port->hol d_count ++;
port->ntt = Fal se;
br eak;
defaul t:
br eak;
ol
| o o L L o e o e o e e e e e e i edeiooooo.

extern void tx_opportunity(Lac_port *port)
if ((port->ntt) && (port->hold _count < Max_tx_per_interval))
if (tx_lacpdu(port))
t x_machi ne(port, Lac_txd);
}
sys_start_tiner(&ort->tx_schedul er, Lac_tx_scheduling_ticks)

}
/22

Rev. 4.0 Saturday, March 7, 1999

25

Preliminary Test Scenarios and Results

Test Scenario 1
static void test1()

Lac_system *s1;

Lac_port *slpl, *slp2, *slp3, *slp4;
Lac_system *s2;

Lac_port *s2pl, *s2p2, *s2p3, *s2p4;

Lan *lanl, *lan2, *lan3, *lan4, *l|an5;

printf("********* TEST 1 *************\n")-

(voi d)sys_create_l an(& anl);
(voi d)sys_create_ |l an(& an2);

_tester(tl);
_tester(t2);

sys_attach_l an_node(l anl, t1);
sys_attach_| an_node(l an2, t2);

lac_create_systen(707, &sl);

lac_create_port(sl, 1);
slpl = sl->ports. next;

| act _user_connect (slpl);

lac_create_port(sl, 2);
slp2 = slpl->next;

| act _user_connect (slpl);
lact _lan_attach(lanl, silpl);

lact _| an_attach(lan2, sl1p2);
ticks(100 * Lac_ticks);

Rev. 4.0 Saturday, March 7, 1999

Test Results : Scenario 1

kkkkkkkk*k TEST 1 Rk I S b

0.1: TX at 707.1 Actor 1.1:1.707.1 Active Nervous Aggregate In sync
Partner 1.1:1. 0.1 Passive Nervous . In sync Collecting Distributing

0.1: TX at 707.2 Actor 1.2:1.707.1 Active Nervous Aggregate In sync
Partner 1.2:1. 0.2 Passive Nervous . In sync Collecting Distributing

1.0: TX at 707.1 Actor 1.1:1.707.1 Active Nervous Aggregate In sync
Partner 1.1:1. 0.1 Passive Nervous . In sync Collecting Distributing

1.0: TX at 707.2 Actor 1.2:1.707.1 Active Nervous Aggregate In sync
Partner 1.2:1. 0.2 Passive Nervous . In sync Collecting Distributing

2.0: TX at 707.1 Actor 1.1:1.707.1 Active Nervous Aggregate In sync
Partner 1.1:1. 0.1 Passive Nervous . In sync Collecting Distributing

2.0: TX at 707.2 Actor 1.2:1.707.1 Active Nervous Aggregate In sync
Partner 1.2:1. 0.2 Passive Nervous . In sync Collecting Distributing
3.0: TX at 707.1 Actor 1.1:1.707.1 Active Nervous Aggregate In sync Collecting Distributing
Partner 1.1:1. 0.1 Passive . . In sync Collecting Distributing
3.0: TX at 707.2 Actor 1.2:1.707.1 Active Nervous Aggregate In sync Collecting Distributing
Partner 1.2:1. 0.2 Passive . . In sync Collecting Distributing
33.0: TX at 707.1 Actor 1.1:1.707.1 Active Nervous Aggregate In sync Collecting Distributing
Partner 1.1:1. 0.1 Passive . . In sync Collecting Distributing
33.0: TX at 707.2 Actor 1.2:1.707.1 Active Nervous Aggregate In sync Collecting Distributing
Partner 1.2:1. 0.2 Passive . . In sync Collecting Distributing
63.0: TX at 707.1 Actor 1.1:1.707.1 Active Nervous Aggregate In sync Collecting Distributing
Partner 1.1:1. 0.1 Passive . . In sync Collecting Distributing
63.0: TX at 707.2 Actor 1.2:1.707.1 Active Nervous Aggregate In sync Collecting Distributing
Partner 1.2:1. 0.2 Passive . . In sync Collecting Distributing
93.0: TX at 707.1 Actor 1.1:1.707.1 Active Nervous Aggregate In sync Collecting Distributing
Partner 1.1:1. 0.1 Passive . . In sync Collecting Distributing
93.0: TX at 707.2 Actor 1.2:1.707.1 Active Nervous Aggregate In sync Collecting Distributing
Partner 1.2:1. 0.2 Passive . . In sync Collecting Distributing

test over

Rev. 4.0 Saturday, March 7 1999 27

Test Scenario 2
static void test2()

{
Lac_system *sl
Lac_port *slpl, *slp2, *sl1p3, *slp4
Lac_system *s2
Lac_port *s2pl, *s2p2, *s2p3, *s2p4b
Lan *lanl, *lan2, *lan3, *lan4, *lan5

Node te
Node *t1l
Node *t2

sterl, tester?2;
= &esterl
= &tester2;

pl’i ntf("********* TEST 2 *************\n")'

(voi d)sys_create_ | an(& anl)
(voi d)sys_create_l an(& an2);

lact _init_tester(tl);
lact _init_tester(t2);
sys_attach_| an_node(l anl, t1)
sys_attach_l an_node(l an2, t2);

lac_create_systen(707, &sl);

lac_create_port(sl, 1);
slpl = sl->ports. next;

| act _user_connect (slpl)

lac_create_port(sl, 2);
slp2 = slpl->next;

| act _user_connect (slpl);

lact _| an_attach(lanl, slpl);
lact _|lan_attach(lan2, s1p2);
tx_test_pdu(& esterl
/** actor’s paraneters and state **/
1 /* port_priority */, 5 /* port_no
1 /* systempriority */, 808 /* system.id
5 /* key */,
1/* active */, 1 /* short_tinmeout */,

/*
1/* in_sync */, 1 /* collecting */, | *

=

[** partner’s paraneters and state **/

1 /* port_priority */, 6 /* port_no

1 /* systempriority */, 707 /* system.id
5 /* key *,

1/* active */, 1 /* short_timeout */, 1 /*
1/* in_sync */, 1 /* collecting *[, 1 /*

ticks(100 * Lac_ticks);
}

Rev. 4.0 Saturday, March 7 1999

*
*]

aggregate */,
distributing */,
*/‘
*/1

aggr egat e *,

distributing */);

28

Test Results : Scenario 2

kkkkkkkk*k TEST 2 kkkkkkhkkhkkhkkkhk*k

0.0: RX at 707.1 Actor 1.5:1.808.5 Active Nervous Aggregate In sync Collecting Distributing

Partner 1.6:1.707.5 Active Nervous Aggregate In sync Collecting Distributing
0.1: TX at 707.1 Actor 1.1:1.707.1 Active . Aggr egat e .

Partner 1.5:1.808.5 Active Nervous Aggregate In sync Collecting Distributing
0.1: TX at 707.2 Actor 1.2:1.707.1 Active Nervous Aggregate In sync

Partner 1.2:1. 0.2 Passive Nervous . In sync Collecting Distributing
1.0: TX at 707.1 Actor 1.1:1.707.1 Active . Aggr egat e .

Partner 1.5:1.808.5 Active Nervous Aggregate In sync Collecting Distributing

1.0: TX at 707.2 Actor 1.2:1.707.1 Active Nervous Aggregate In sync

Partner 1.2:1. 0.2 Passive Nervous . In sync Collecting Distributing
2.0:TX at 707.1 Actor 1.1:1.707.1 Active . Aggregate In sync

Partner 1.5:1.808.5 Active Nervous Aggregate In sync Collecting Distributing

2.0: TX at 707.2 Actor 1.
Partner 1.

1.707.1 Active Nervous Aggregate In sync
1. 0.2 Passive Nervous . In sync Collecting Distributing

3.0: TX at 707.1 Actor 1.1:1.707.1 Active . Aggregate In sync

Partner 1.5:1.808.5 Active Nervous Aggregate In sync Collecting Distributing
3.0: TX at 707.2 Actor 1.2:1.707.1 Active Nervous Aggregate In sync Collecting Distributing

Partner 1.2:1. 0.2 Passive . . In sync Collecting Distributing
4.0: TX at 707.1 Actor 1.1:1.707.1 Active . Aggregate In sync

Partner 1.5:1.808.5 Active Nervous Aggregate In sync Collecting Distributing
5.0: TX at 707.1 Actor 1.1:1.707.1 Active . Aggregate In sync

Partner 1.5:1.808.5 Active Nervous Aggregate In sync Collecting Distributing
6.0: TX at 707.1 Actor 1.1:1.707.1 Active . Aggregate In sync

Partner 1.5:1.808.5 Active Nervous Aggregate In sync Collecting Distributing
7.0:TX at 707.1 Actor 1.1:1.707.1 Active . Aggregate In sync

Partner 1.5:1.808.5 Active Nervous Aggregate In sync Collecting Distributing
8.0: TX at 707.1 Actor 1.1:1.707.1 Active Aggregate In sync

Partner 1.5:1.808.5 Active Ner;/ous Aggregate In sync Collecting Distributing

Rev. 4.0 Saturday, March 7 1999 29

9.0: TX at

and so on until:

90.0: TX at

91.0: TX at

92.0: TX at

93.0: TX at

93.0: TX at

test over

707.

707.

707.

707.

707.

707.

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Part ner

Act or
Par t ner

Act or
Part ner

Rev. 4.0 Saturday, March 7, 1999

=

. 707.
. 808

. 707.
. 808

. 707.
. 808

. 707.
. 808

. 707.

. 707.

Active
Active

Active
Active

Active
Active

Active
Active

Active
Passi ve

Active
Passi ve

Ner vous

Ner vous
Ner vous

Ner vous
Ner vous

Ner vous
Ner vous

Ner vous

Ner vous

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e

Aggr egat e

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

Col | ect
Col | ect
Col | ect
Col | ect
Col | ect
Col | ect
Col | ect
Col | ect

ng

ng

ng

ng

ng
ng

ng
ng

30

Distributi

Distributi

Distributi

Distributi

Distributi
Distributi

Distributi
Distributi

ng

ng

ng

ng

ng
ng

ng
ng

Test Scenario 3
static void test3()

{
Lac_system *s1
Lac_port *slpl, *slp2, *slp3, *slp4
Lac_system *s2
Lac_port *s2pl, *s2p2, *s2p3, *s2p4b
Lan *lanl, *lan2, *lan3, *lan4, *lan5
prl ntf(”********* TEST 3 *************\n")-
(void)sys_create_|l an(& an3);
(voi d)sys_create_l an(& an4);
(voi d)sys_create_|l an(& an5);
lac_create_systen(101, &sl);
lac_create_port(s1,1); slpl = s1->ports.next;
| act _user_connect (slpl);
lact _lan_attach(|an3, sipl);
lac_create_port(s1,2); slp2 = slpl->next;
| act _user_connect (s1p2);
lact _lan_attach(|an4, sip2);
|l ac_create_systen(102, &s2);
lac_create_port(s2,3); s2p3 = s2->ports. next;
| act _user_connect (s2p3);
lact _lan_attach(|an3, s2p3);
lac_create_port(s2,2); s2p2 = s2p3->next;
| act _user_connect (s2p2);
lact _lan_attach(|an4, s2p2);
ticks(100 * Lac_ticks);
lac_create_port(s1,3); sl1p3 = slp2->next;
| act _user_connect (s1p3);
lact _lan_attach(|an5, s1p3);
lac_create_port(s2,1); s2pl = s2p2->next;
| act _user_connect (s2pl);
lact _lan_attach(|an5, s2pl);
ticks(100 * Lac_ticks);

}

Rev. 4.0 Saturday, March 7 1999

31

Test Results : Scenario 3

kkkkkkkk*k TEST 3 kkkkkkhkkhkkhkkkhk*k

0.1: TX at 101.1 Actor 1.1:1.101.1 Active Nervous Aggregate In sync
Partner 1.1:1. 0.1 Passive Nervous . In sync Collecting Distributing

0.1: RX at 102. 3 Actor

1.1:1.101.1 Active Nervous Aggregate In sync
Partner 1 .

.1:1. 0.1 Passive Nervous In sync Collecting Distributing

0.1: TX at 101.2 Actor 1.2:1.101.1 Active Nervous Aggregate In sync
Partner 1.2:1. 0.2 Passive Nervous . In sync Collecting Distributing

0.1: RX at 102.2 Actor 1.2:1.101.1 Active Nervous Aggregate In sync
Partner 1.2: Passi ve Nervous . In sync Collecting Distributing

N
[EnY
©
N

0.1: TX at 102. 3 Actor 1.
Partner 1.

.102.1 Active . Aggr egat e .
1.101.1 Active Nervous Aggregate In sync

[EnY

0.1:RX at 101.1 Actor 1.
Partner 1.

.102.1 Active . Aggr egat e .
1.101.1 Active Nervous Aggregate In sync

[EnY

0.1: TX at 102. 2 Actor 1.
Partner 1.

1.102.1 Active . Aggr egat e .
1.101.1 Active Nervous Aggregate In sync

0.1:RX at 101.2 Actor 1.2:1.102.1 Active . Aggr egat e .
Partner 1.2:1.101.1 Active Nervous Aggregate In sync

0.2: TX at 101.1 Actor 1.1:1.101.1 Active . Aggr egat e
Partner 1.3:1.102.1 Active . Aggr egat e

0.2:RX at 102.3 Actor 1.1:1.101.1 Active . Aggr egat e
Partner 1.3:1.102.1 Active . Aggr egat e

0.2: TX at 101.2 Actor 1.2:1.101.1 Active . Aggr egat e
Partner 1.2:1.102.1 Active . Aggr egat e

0.2:RX at 102.2 Actor 1.2:1.101.1 Active . Aggr egat e
Partner 1.2:1.102.1 Active . Aggr egat e

1.0: TX at 101.1 Actor 1.1:1.101.1 Active . Aggr egat e
Partner 1.3:1.102.1 Active . Aggr egat e

1.0: RX at 102.3 Actor 1.1:1.101.1 Active . Aggr egat e
Partner 1.3:1.102.1 Active . Aggr egat e

Rev. 4.0 Saturday, March 7 1999 32

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

101.

102.

102.

101.

102.

101.

101.

102.

102.

101.

102.

101.

101.

102.

101.

102.

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Part ner

Act or
Par t ner

Act or
Part ner

Act or
Part ner

Act or
Part ner

Act or
Part ner

Act or
Par t ner
Act or
Part ner

Act or
Part ner

=

=

=

Rev. 4.0 Saturday, March 7, 1999

il
el

[EnY

1.101.
. 102.

[EnY

. 101.
. 102.

. 101.
. 102.

. 102.
. 101.

. 102.
. 101.

. 102.
. 101.

. 102.
. 101.

. 101.
. 102.

. 101.
. 102.

. 102.
. 101.

. 102.
. 101.

. 102.
. 101.

. 102.
. 101.

101.
102.
101.
102.

. 101.
1.102.

RPRPR

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act
Act
Act

Act
Act

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve
ve
ve

ve
ve

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e
Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

sync
sync
sync
sync
sync

sync

sync
sync

sync
sync

sync
sync
sync
sync

sync
sync

Col I ecting

Col I ecti ng

Col I ecting

Col I ecting

Col I ecti ng
Col I ecting

Col I ecti ng
Col I ecting

33

Di stributing

Di stributing

31.

31.

31.

31.

31.

31.

31.

31.

61.

61.

61.

61.

61.

61.

:TX

:TX

:TX

:TX

:TX

:TX

:TX

:TX

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

102.

101.

101.

102.

101.

102.

102.

101.

102.

101.

101.

102.

101.

102.

102.

101.

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Part ner

Act or
Par t ner

Act or
Part ner

Act or
Part ner

Act or
Part ner

Act or
Part ner
Act or
Part ner

Act or
Part ner

Act or
Part ner

=

=

=

Rev. 4.0 Saturday, March 7, 1999

il
el

[EnY

1.101.
. 102.

[EnY

. 102.
. 101.

. 102.
. 101.

. 101.
. 102.

. 101.
. 102.

. 101.
. 102.

. 101.
. 102.

. 102.
. 101.

. 102.
. 101.

. 102.
. 101.

. 102.
. 101.

. 101.
. 102.

101.
102.
101.
102.

. 102.
1.101.

. 102.
. 101.

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act
Act
Act

Act
Act

Act
Act

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve
ve
ve

ve
ve

ve
ve

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e
Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync
sync
sync

sync
sync

sync
sync

Col I ecti ng
Col I ecti ng

Col I ecting
Col I ecti ng

Col I ecti ng
Col I ecti ng

Col I ecti ng
Col I ecti ng

Col I ecti ng
Col I ecti ng

Col I ecting
Col I ecti ng

Col I ecting
Col I ecti ng

Col I ecting
Col I ecting

Col I ecting
Col I ecting

Col I ecting
Col I ecting

Col I ecting
Col I ecting

Col I ecti ng
Col I ecti ng

Col I ecting
Col I ecting
Col I ecti ng
Col I ecti ng

Col I ecti ng
Col I ecting

Col I ecti ng
Col I ecting

34

Distributi

Distributi

Distributi

Distributi

Distributi
Distributi

Distributi

Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi
Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

ng

ng

ng

ng

ng
ng

ng

ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng
ng
ng

ng
ng

ng
ng

61.

61.

91.

91.

91.

91.

91.

91.

91.

91.

100.

100.

100.

100.

100.

100.

:TX

:TX

:TX

:TX

:TX

:TX

:TX

:TX

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

102.

101.

101.

102.

101.

102.

102.

101.

102.

101.

102.

101.

101.

102.

102.

101.

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Part ner

Act or
Par t ner

Act or
Part ner

Act or
Part ner

Act or
Part ner
Act or
Par t ner

Act or
Part ner

Act or
Part ner

Act or
Part ner

=

=

=

Rev. 4.0 Saturday, March 7, 1999

il

[EnY

1.102.
. 101.

e

il

. 102.
. 101.

. 102.
. 101.

. 101.
. 102.

. 101.
. 102.

. 101.
. 102.

. 101.
. 102.

. 102.
. 101.

. 102.
. 101.

. 102.
. 101.

. 102.
. 101.

102.
101.
101.

. 101.

. 102.
. 101.

. 102.
. 101.

WR PR

w P

Active
Active

Active
Active

Active
Active

Active
Active

Active
Active

Active
Active

Active
Active

Active
Active

Active
Active

Active
Active

Active
Active

Active
Active
Active
Passi ve

Active
Passi ve

Active
Active

Active
Active

Ner vous
Ner vous

Ner vous
Ner vous

Ner vous

Ner vous

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync

sync
sync
sync
sync
sync

sync

sync

Col | ect
Col | ect

Col | ect
Col | ect

Col | ect
Col | ect

Col | ect
Col | ect

Col | ect
Col | ect

Col | ect
Col | ect

Col | ect
Col | ect

Col | ect
Col | ect

Col | ect
Col | ect

Col | ect
Col | ect

Col | ect

Col | ect

Col | ect

Col | ect

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng
ng

ng
ng

ng

35

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi

Distributi

Distributi

Distributi

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng
ng

ng
ng

ng

100.

100.

100.

100.

101.

101.

101.

101.

102.

102.

102.

102.

102.

102.

121.

121.

:TX

:TX

:TX

:TX

:TX

:TX

:TX

:TX

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

101.

102.

101.

102.

101.

102.

102.

101.

102.

101.

102.

101.

101.

102.

101.

102.

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Part ner

Act or
Part ner

Act or
Part ner

Act or
Par t ner
Act or
Par t ner

Act or
Part ner

Act or
Part ner

Act or
Part ner

Act or
Part ner

=

=

=

Rev. 4.0 Saturday, March 7, 1999

il
il

[EnY

. 101.
. 102.

. 101.

. 102.

. 101.
. 102.

. 101.
. 102.

. 101.
. 102.

. 101.
. 102.

. 102.
. 101.

. 102.
. 101.

. 102.
. 101.

1.102.1

=

. 101.

102.
101.
102.
101.

101.

1.102.1

. 101.
. 102.

. 101.
. 102.

. 101.
. 102.

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act
Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve
ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e
Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

In

In

sync

sync

sync
sync

sync
sync

sync
sync
sync
sync

sync
sync

sync
sync

sync
sync

Col I ecting

Col I ecting

Col I ecting
Col I ecting

Col I ecti ng
Col I ecti ng

Col I ecting
Col I ecti ng

Col I ecting
Col I ecti ng

36

Di stributing

Di stributing

Di stributing

Di stributing

121.

121.

121.

121.

121.

121.

131.

131.

131.

131.

151.

151.

151.

151.

151.

151.

:TX

:TX

:TX

:TX

:TX

:TX

:TX

:TX

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

101.

102.

102.

101.

102.

101.

101.

102.

102.

101.

101.

102.

101.

102.

102.

101.

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Part ner

Act or
Part ner

Act or
Part ner
Act or
Part ner

Act or
Par t ner

Act or
Part ner

Act or
Part ner

Act or
Part ner

Act or
Part ner

=

=

=

Rev. 4.0 Saturday, March 7, 1999

il
il

[EnY

NI

. 101.
. 102.

. 101.

. 102.

. 102.
. 101.

. 102.
. 101.

. 102.
. 101.

. 102.
. 101.

. 101.
. 102.

. 101.
. 102.

1.102.1

=

. 101.

102.
101.
101.
102.

101.

1.102.1

. 101.
. 102.

. 101.
. 102.

. 102.
. 101.

. 102.
. 101.

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act
Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve
ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e
Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync

sync

sync

sync
sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

Col I ecti ng
Col I ecti ng

Col I ecti ng
Col I ecting

Col I ecti ng
Col I ecting

Col I ecti ng
Col I ecting

Col I ecti ng
Col I ecting

Col I ecti ng
Col I ecting

Col I ecti ng
Col I ecting

Col I ecti ng
Col I ecting

Col I ecting
Col I ecting

Col I ecti ng
Col I ecti ng

Col I ecting
Col I ecti ng

Col I ecting
Col I ecti ng

37

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

151.

151.

161.

161.

161.

161.

181.

181.

181.

181.

181.

181.

181.

181.

191.

191.

:TX

:TX

:TX

:TX

:TX

:TX

:TX

:TX

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

102.

101.

101.

102.

102.

101.

101.

102.

101.

102.

102.

101.

102.

101.

101.

102.

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Par t ner

Act or
Part ner

Act or
Par t ner
Act or
Part ner

Act or
Part ner

Act or
Par t ner

Act or
Par t ner

Act or
Part ner

Act or
Part ner

Act or
Part ner

=

=

==

Rev. 4.0 Saturday, March 7, 1999

il
il

[EnY

1.101.
. 102.

[EnY

. 102.
. 101.

. 102.
. 101.

. 101.
. 102.

. 101.
. 102.

. 102.
. 101.

. 102.
. 101.

. 101.
. 102.

101.
102.
101.
102.

. 102.
1.101.

. 102.
. 101.

. 102.
. 101.

. 102.
. 101.

. 101.
. 102.

. 101.
. 102.

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act
Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

Act
Act

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve
ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

ve
ve

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e
Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

sync
sync

sync
sync

sync

sync
sync
sync
sync

sync

sync
sync
sync
sync
sync
sync

sync
sync

sync
sync

sync
sync

sync
sync

sync

sync

Col | ect
Col | ect

Col | ect
Col | ect

Col | ect
Col | ect

Col | ect
Col | ect

Col | ect
Col | ect
Col | ect
Col | ect

Col | ect
Col | ect

Col | ect
Col | ect

Col | ect
Col | ect

Col | ect
Col | ect

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng
ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

38

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi
Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

Distributi
Distributi

ng
ng

ng
ng

ng
ng

ng
ng

ng
ng
ng
ng

ng
ng

ng
ng

ng
ng

ng
ng

191.0: TX at 102.1 Actor

Par t ner

191. 0: RX at 101. 3 Actor

test over

Par t ner

1.102.1 Active
1.101.1 Active

1.
1.

1:1.102.1 Active
3:1.101.1 Active

Rev. 4.0 Saturday, March 7, 1999

Aggr egat e
Aggr egat e

Aggr egat e
Aggr egat e

In sync

In sync

39

