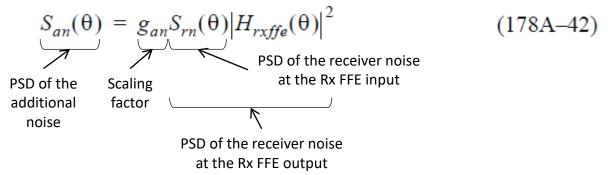
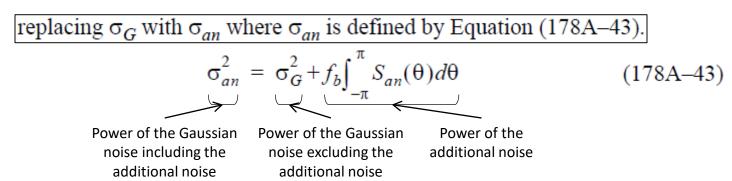
Correction in Calculation of scale factor of the additional receiver noise, g_an, in COM Matlab Code

COM Commit Request Number 4p8_3


Hossein Shakiba Huawei Technologies Canada May 2025

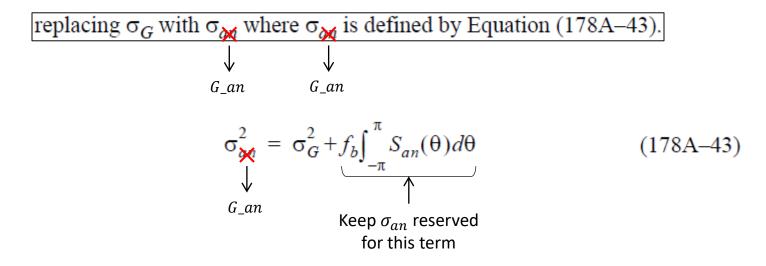
Introduction


- Section "178A.1.10.1. Additional receiver noise" in D1.5 defines the method that increases receiver noise before MLSD COM calculation to mimic the implementation penalty
- A recent review of the section of the COM code that implements this section revealed "g_an", the scale factor for the added noise, is not correctly calculated in function "MLSE_U1_c_178A"
- This contribution summarizes how this scale factor was intended to be calculated based on section "178A.1.10.1 Additional receiver noise" of D1.5 and how to fix the code
- It also suggests considering a comment against the draft in the next cycle for clarification to prevent future confusions

Quick Review of the "Additional receiver noise" Method

• The idea is to add a new noise term by adding a scaled version of the receiver noise PSD (eta_0 noise) to the overall noise PSD prior to MLSD, as described by Equation (178A-42):

• This additional noise is added to the Gaussian portion of the total noise and the result replaces σ_G as described by Equation (178A-43) and the sentence above it:



• Apparently, the choice of parameter names has been confusing as subscript \cdots_{an} represents additional noise in $S_{an}(\theta)$, but Gaussian part of noise that now includes additional noise in σ_{an}

3

Recommendation for a Later Action for Clarity

- This confusion appears to have caused an error in the Matlab COM code
- It is suggested to clarify this by a simple change in the draft:

• A comment against D1.5 will be submitted for clarity

The Issues with Matlab Code

• g_{an} scales the noise PDF, PDF, by an increase target amount, $delta_COM_an$:

```
2149 - [p_an, P_an, ~] = scaleCDF( PDF,delta_COM_an,DERO, A_s );
```

ullet The difference between the scaled noise and the original noise yields σ of the additional receiver noise:

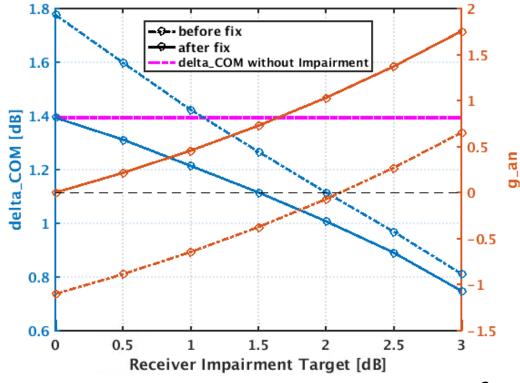
```
2150 - sigma_an_2_pdf=sum(p_an.y.*p_an.x.^2)-sum(PDF.y.*PDF.x.^2);
```

• Naturally, g_{an} should be the ratio between power of this additional noise and power of the receiver noise (eta_0):

```
2152 - g_an=(sigma_an_2_pdf-P<del>SD_results.S_G_rms^2</del>)/PSD_results.S_rn_rms^2;
```

- The extra term in the above line appears to be due to the confusion and should be removed
 - * Note that $sigma_an_2_pdf$ assumes Equation (178A-43), which includes the Gaussian noise part, whereas this is clearly not the case and $sigma_an_2_pdf$ is already the difference

Test Case Verification


• This issue can result in a negative g_{an} , expected to be positive (see Line 20, page 784 of D1.5):

 g_{an} is a scale factor for the added noise with a value greater than or equal to 0.

• Without a fix, g_{an} will become negative when $sigma_an_2_pdf < PSD_{results}.S_G_rms$:

```
2152 - g_an=(sigma_an_2_pdf-PSD_results.S_G_rms^2)/PSD_results.S_rn_rms^2;
```

- This will happen at a target delta_COM_an level that corresponds to the above inequality
- This can be immediately seen if this target is set to 0, which forces $sigma_an_2_pdf = 0$, whereas for a zero target $g_{an} = 0$ is expected
- Sample COM results of a test case confirm that:
 - **×** Before fix, g_{an} becomes negative for scale target < ~2.1dB
 - \checkmark After fix, g_{an} always stays positive and approaches 0 as scale target approaches 0
 - Before fix, delta_COM is an over-estimate and exceeds its maximum allowed level
 - ✓ After fix, delta_COM approaches its maximum allowed level as scale target approaches 0

Thank You ©

Hossein Shakiba Huawei Technologies Canada