Initial Thoughts on E4AI PHYs and Interfaces, by Phase

Kent Lusted – Synopsys Mark Nowell – Cisco

Goal Setting

- Market expects a quick project
- A phased approach to provide the right PHYs and interfaces at the right time
 - Early requirements may come too late, later requirements may be too early
- Need crisp consensus on PHYs and interfaces in phase 1 (and good sense of phase 2)
- AI focused back-end networks are driving both initial requirements and some unique requirements ahead of frontend network needs

Disclaimer

- This is an initial swag of a list by phase for the purpose of facilitating discussion
- This is <u>NOT</u> the final list. Feedback and discussion is strongly encouraged
- See first and second bullets

Nomenclature

For the purpose of this contribution, the following nomenclature is used

- **Rack** is a single server cabinet containing multiple AI servers
- Pod is a larger, modular unit that typically consists of one or multiple racks, sharing common resources like power and cooling
- Scale up = Back-end network primarily connecting devices inside of a rack unit
- **Scale out** = Back-end network primarily connecting racks within a pod

Themes that Kent and Mark hear

- Higher signaling rate is being driven first by scale-up
 - Next, higher signaling is being driven secondly by scale-out
 - Then front-end network
 - Maximize the commonality between the networks
- Stay with copper until you can't
- CPO will have a role
- Power & "Reliability" are high on the "Care about" list

Phase 1 – "Right Now"

- Higher speed lane rate is top priority (~400 Gbps/lane)
- Radix is important for deployments: getting the highest data rate through the fewest number of lanes possible
 - x1, x2, x4 (x8?) lane widths
 - 400 GbE, 800 GbE, 1.6 TbE, (3.2 TbE?)
- AUI C2M and AUI C2C to pluggable front panel
 - Both optics and copper interconnect leads to support for pluggable modules
 - CPO and NPO implementation could yield support with "short-reach" AUI
 - CPC implementations will be common for electrical channels
- CR/KR interconnect
 - 1m DAC desired but <1m (0.75m?) may be acceptable
 - Alternatives to passive DAC?
- DR optics (maximize radix): 1 lambda per fiber and parallel fiber
 - What are the reach break points?

Phase 1 – things to think about

- FLR target when Link Layer Retry (LLR) is assumed
 - Mean time between Phy errors (MTBPE)
- Latency: find the best trade-off between error rate performance and latency
 - extended reaches can support greater FEC latency
 - "Type 1" End-end FEC
- Optics
 - Types?: Retimed, Linear (LPO) and/or half-linear (LRO)
 - Implementations to consider for optics (both pluggable and CPO).
- Should IEEE 802.3 do something differently to address active media types?
 - Active cables: AEC, ACC, AOC

Phase 2 – "Needed Soon"

- x8-lanes / 3.2 TbE (if not in Phase 1)
- Optics:
 - Longer reaches: Intra-building, inter-building
 - Segmented/Concatenated FECs for longer reaches
 - New SMF channels (Multi-core Fiber (MCF), Optical Circuit Switch (OCS) considerations)
 - Non-SMF?
- Active cables not in Phase 1

Phase 3 – "Need later"

- For further discussion
- MMF ?
- Coherent?

Wrap up

- A starting point for what could be included in a Phase 1 is proposed
 - Feedback welcome
- Key points
 - New lane rate needed, widths of 1,2,4 (and possibly 8)
 - C2M/C2C electrical, Short reach optics, cables
- Key incubation topics to dig into
 - Modulation, coding, FEC
 - Latency / FLR / LLR tradeoffs
 - Active cables