PDCC AdHoc

Ethernet-APL Power Classes

Steffen Graber, Pepperl+Fuchs

Ethernet-APL Trunk-Spur-Topology

Ethernet-APL Power Classes

 In process automation applications Ethernet-APL currently defines the following power classes (A and C for spurs, 3 and 4 for trunks).

Power Class	Α	C	3	4
U _{PS(max)} (VDC)	15	15	50	50
U _{PS(min)} (VDC)	9.6 ¹⁾	11.61 ¹⁾	46	46
I _{PS(min)} (mA)	55.56	95	1250	2000
P _{PS(min)} (W)	0.54	1.1	57.5	92
U _{PL(min)} (VDC)	9.0 ³⁾	10.6 ³⁾	28.8	28.8
P _{PL(min)} (W)	0.5	1.0	36 ²⁾	57.6 ²⁾

¹⁾ This is the minimum output voltage at the port connector (due to the internal current limiting circuit, especially for resistive current limitation the internal required voltage is higher).

- ²⁾ Not specified in Ethernet-APL port profiles, as it depends on the cable length, values given are for maximum allowed voltage drop across the trunk cable/minimum required supply voltage for a field switch.
- ³⁾ The difference between $U_{PS(min)}$ and $U_{PL(min)}$ is taking 10.6 Ω cable resistance into account (200 m AWG18 spur @ 70 °C).

Application Background

- Ethernet-APL spur power classes A and C are limited to 0.5 W or 1 W at the field device due to intrinsic safety requirements (2-WISE), which already adds relevant effort for low power design of the field devices.
- Internally in the field switch this equals to summed power of about 1 W for a power class A field device (internal resistive current limitation in the field switch) and 1.2 to 1.3 W for a power class C device (internal electronic current limitation in the field switch).
- Goal is, that over the years the power consumption of a field device declines from 500 mW to about 250 mW, but for this
 more power efficient MCUs need to be developed first.
- Originally for an Ethernet-APL Trunk only power class 3 was introduced, providing a minimum of 57.5 W (46 V x 1.25 A) to the trunk.
- Taking cable losses into account a minimum of **36 W (28.8 V x 1.25 A) is available at the field switches**, which is distributed to the switch electronics and the field devices.
- As the number of field devices therefore is pretty limited, a decision has been made to introduce power class 4, which allows to feed a minimum of 92 W (46 V x 2 A) to the trunk.
- This results in a minimum available power at the field switches of 57.6 W (28.8 V x 2 A) and allows to supply significantly more field devices at similar/slightly increased infrastructure cost (e.g. larger power feeding inductors), but allows a more cost effective overall system.
- Therefore getting to higher power numbers in process automation applications has been important.
- Even if Ethernet-APL uses engineered power instead of PoDL, higher power also for other applications might be important.

Thank you!

03/29/2023 | Page 5 PDCC AdHoc