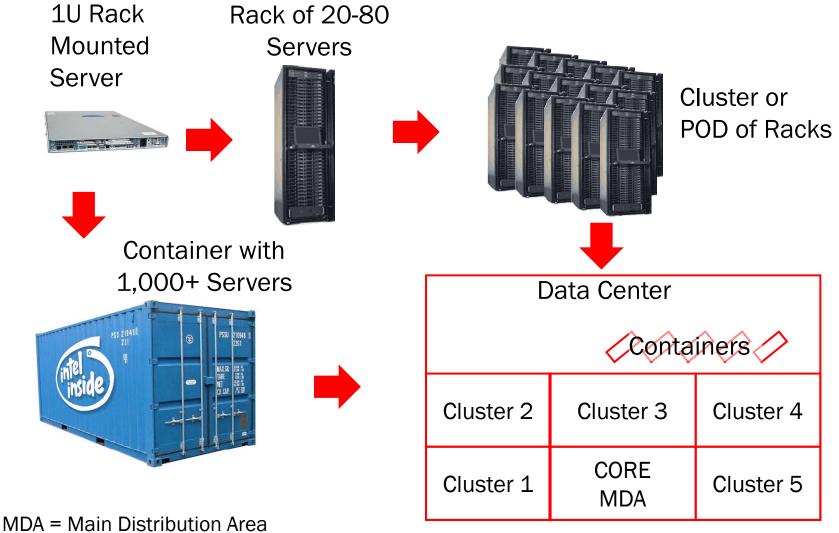


DATA CENTER BANDWIDTH SCENARIOS


Scott Kipp – Brocade May 18, 2011

Goal of This Presentation

- This presentation shows how a rack of servers can create hundreds of Gbps of bandwidth and can be oversubscribed at the rack
- This presentation shows how racks of servers are consolidated into pods or containers to produce Tbps of bandwidth and are oversubscribed at the pod
- This presentation shows how pods are aggregated in a core of the data center and are oversubscribed to the MAN/WAN to produce Gbps or 100s of Gbps

Data Center Summary

 \mathbf{Z}

Servers per Rack

Let's study 40 Servers / Rack

10-80 1U servers / Rack

64 Blade servers / Rack

Copper Links to Middle of Rack Switch

10U Blade Server chassis holds 16 Blade Servers

Bandwidth to/from Rack Switches

Let's assume 400 Gbps / Rack in 2015 <

I/O per Server (Gbps)	5	10	20	40	80	
Servers / Rack	40	40	40	40	40	
Bandwidth / Rack (Gbps)	200	400	800	1600	3200	
10GbE Uplinks with 1:1 Subscription	20	40	80	160	320	
40GbE Uplinks with 1:1 Subscription	5	10	20	40	80	
100GbE Uplinks with 1:1 Subscription	<u>2</u>	4	8	16	32	
10GbE Uplinks with 4:1 Subscription	5	10	20	40	80	
40GbE Uplinks with 4:1 Subscription	1.25	2.5	5	10	20	
100GbE Uplinks with 4:1 Subscription	0.5	1 /	2	4	8	
•	/		7			

Some current ToR Switches support this

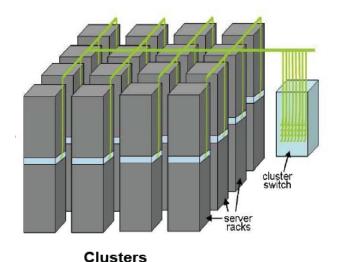
48 10GbE SFP+ Ports

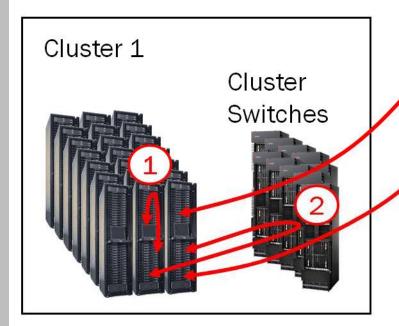
4 40GbE – QSFP Ports

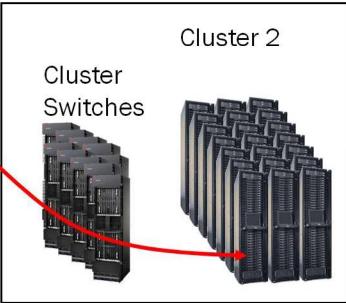
Cluster Bandwidth Requirements

- Clusters or PODs are groups of racks of servers or a container of servers
- If each rack needs 400 Gbps, then it's pretty easy to calculate cluster bandwidth based on the number of racks.
- 100 Racks deliver 40 Tbps
 - With several switches being sold with 5Tbps of bandwidth, 8 switches would be needed in a cluster

4x4 Cluster with 16 racks




Illustration courtesy of Google


Intra/Inter-Cluster Traffic

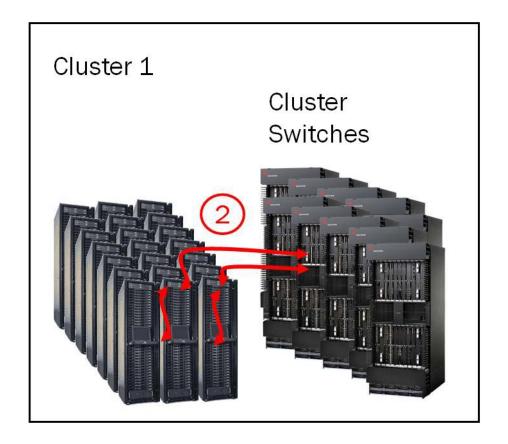
Listed in order of over-subscription

- 1. Within a Rack
- 2. Between Racks in a Cluster
- 3. Cluster-to-Cluster
- 4. Server to Internet

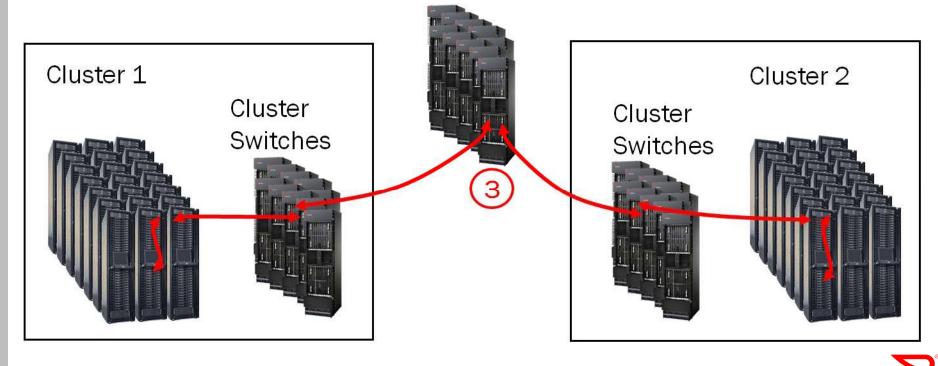
Core
Switches/
Routers

Interconnect fabric

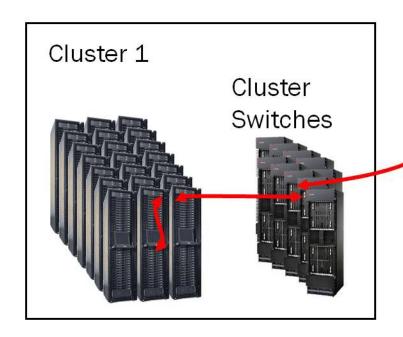
Within a Rack Communication

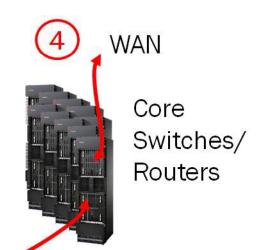

- Only 1 switch involved
- 1 Switch latency
- 2 links
- A few meters distance

Between Racks within a Cluster


- 3 switches involved
- 3 Switch latencies
- 4 links
- <100 meter distance

Cluster to Cluster Traffic

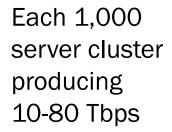

- 1. 5+ Switches involved more can be in the core
- 2. 5+ switch latencies
- 3. 6 links
- 4. Hundreds of meters



5/18/2011 10

Server to Internet

- 1. 3+ Switches involved more can be in the core
- 2. 3+ switch latencies + Router Latency
- 3. 4+ links
- 4. Hundreds of meters


8

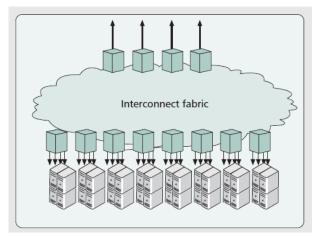
Cluster Summary

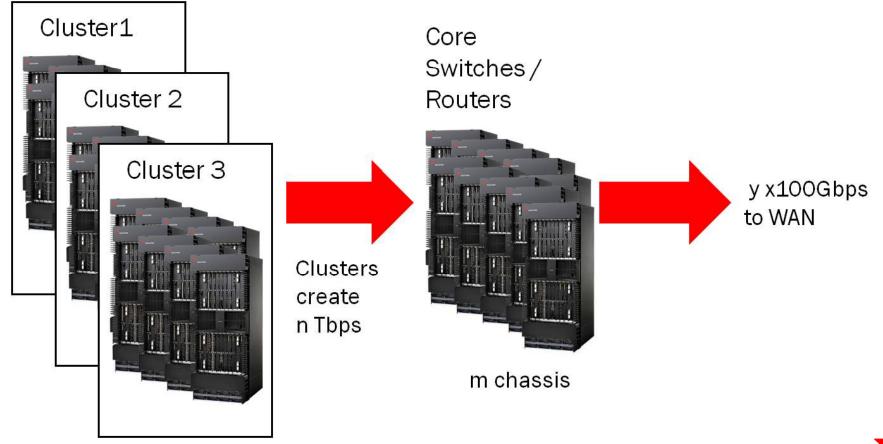
- Large oversubscription between:
 - Server and Rack
 - Rack and Cluster Switch
 - Cluster Switch and Core

Each server producing 10-80Gbps

Each 40 server rack producing 0.4-3.2 Tbps

Each 1,000 server cluster sends fraction of possible bandwidth to Interconnect Fabric





Data Center Summary

Large oversubscription in Core to WAN

5/18/2011 13

Oversubscription to WAN

Usually very high oversubscriptions to WAN

Clusters	10	10	10	10
Bandwidth / Cluster to Core (Tbps)	0.4	1	2	4
Bandwidth to Core (Tbps)	4	10	20	40
Bandwidth to WAN (Gbps)	20	40	200	400
Oversubscription to WAN	200	250	100	100

5/18/2011 14

Summary

- 1,000 server clusters can produce a Tbps of bandwidth at 1 Gbps/server
- Oversubscription occurs at several levels before the data reaches the WAN
- Oversubscriptions occur because of users don't perceive the need for 1:1 subscription and won't pay for it
- The bandwidth demand is there, but the cost is prohibitive

