Bridging Functional Insulation Implications and system consequences

802.3 Isolation Ad Hoc Meeting Bridging Functional Insulation Contribution Created by Mick Maytum

Bridging Functional Insulation Contribution

Introduction

- IEC TR 60664-2-1 Ed. 2.0: Insulation coordination for equipment within low-voltage systems Part 2-1: Application guide Explanation of the application of the IEC 60664 series, dimensioning examples and dielectric testing has functional insulation bridging examples
- Reference PoE designs from several manufactures and actual products bridge the functional insulation barrier
- This is particularly relevant for PoE equipment mounted outside the building such as Access Points and Cameras.
- The recent Protection Engineers Group 2018 Conference had a presentation called *"Lightning Protection for PoE Powered Ethernet Radio Systems"* that illustrated the resulting lightning currents flowing in the Ethernet cabling.
- This contribution discusses the consequences of bridging and mitigating actions

Functional Insulation Example

• IEC TR 60664-2-1 only considers the functional insulation case of conductors at different AC or DC potentials.

Functional Insulation Ethernet

- Ethernet and PoE functional insulation is rather special because it involves isolating transformers as part of the functional insulation barrier
 - Before PoE the isolation barrier was signal and powering source. An AC mains powering source required a safety insulation barrier
 - IEEE PoE uses non-hazardous voltages and the DC/DC converter can use a functional insulation barrier
 - PoE PDs, with a single (Ethernet) port and in a reinforced insulation enclosure, do not need a DC/DC converter insulation barrier, provided there is not a protective earth PE connection.

Functional Insulation — Ethernet screened (shielded) cable

- It is highly recommended the external Ethernet runs use screened cable. Application examples are remote access points (APs) and PoE cameras.
 - The internal PSE or a PoE injector is likely to connect the cable screen to PE.
 - The screened cable brings the PE to the remote PD.
 - What does the screen/PE get routed to at the PD?
 - The remote PoE PD may route the screen to a PE or functional earth terminal on the PD.
 - Further, the isolated circuitry may be bridged to the screen/PE terminals in both the remote equipment and a separate PoE injector, see next slide.

Functional Insulation — PE connections everywhere

- The left remote AP connects the screen to the PE terminal and via a diode bridge the "isolated" circuitry (weather proof cover removed). Note the use of a functional earth symbol A and not the PE symbol (1)
- The right PoE injector connects the mains PE terminal to the LAN and PoE connector screens. The injector power source is also connected to PE

PE current routing

Bridging Functional Insulation Contribution

- Lightning surge currents have several circulation paths.
- If an earth potential rise occurs at PE3, a surge current will flow through the PoE connection.
- A series common-mode choke can reduce the PoE cable surge current
- At the PoE injector some current will flow into PE2 and the rest to the LAN connection.
- A direct screen to PE bond can bypass some of the LAN cable surge current
- At the Internal equipment the current will flow to PE1 and possibly to other connected equipment.

7

- Uses 90 V gas discharge tubes (GDTs)
 - PoE port will fail the IEEE 802.3 500 V insulation resistance test
 - Do not give the best lightning limiting voltage — a 150 V to 200 V type GDT is less.
 - Likely to be hazardous if power line contact occurs.
- Connects the PoE to PE in commonmode surge operation.
- No differential-mode surge protection.

PSE situation

- The use of the earth symbol _____ (circled) implies that the PSE powering is connected to the PE system.
 - A better symbol would be functional equipotential bonding //// (Chassis in vacuum tube days)
- A common power supply to all ports has led to an incoming surge to one PoE port exiting via another PoE port. This has caused field failures.
 - Full description and some fixes given in <u>Power Over</u> <u>Ethernet (PoE) Part 2 - Protecting PoE Against Intra-</u> <u>Building and OSP Environments</u> by Tim Ardley, 2015 PEG Conference

Closing comments

- Some PD and PSE designs offered do not maintain the functional isolation barrier
- If shunt voltage limiting protection is used it needs to have a limiting threshold above 500 V to pass the IEEE 802.3 500 V insulation resistance test.
 - A useful by-product of this is that an AC mains power contact test is not required.
 - For products that fail the 500 V insulation test the ITU-T is set to require an AC mains power contact test.
- To reduce the conducted surge currents in the LAN and PoE cables & ports, PE bonding arrangements should be thought through, possible use of direct screen to PE bonding, application of toroidal core in-line common mode chokes considered and PSE PoE inter-port surge resistance understood.
- Surging ports without removing protection is required for ITU-T compliance and allowed in IEC TR 60664-2-1 Ed. 2.0: *Insulation coordination for equipment within low-voltage systems Part 2-1: Application guide Explanation of the application of the IEC 60664 series, dimensioning examples and dielectric testing*.