Feasibility of high speed TDM in NG-EPON

www.huawei.com

Minghui Tao, Lei Jing

IEEE Meeting, May 2014

HUAWEI TECHNOLOGIES CO., LTD.

Outline

- > General Requirements
- > Data Rate choices
- > Link Budget
- > Available Wavelength Resources
- Technology and Device Maturity
- > Summary

General Rrequirements

(Huawei view)

- Providing higher system capacities. (Shall)
 - □ The data rate shall be higher than 10Gbps.
 - □ Link budget shall meet EPON requirement, this will be discussed in detail below.
- Coexistence with 1G-EPON, 10G-EPON and RF overlay. (Shall)
 - Wavelength plan is very important, needs detailed analysis.
- Can be applicable to mobile backhaul. (Shall)
 - □ An emerging requirement, mainly affecting the system capability.
 - □ Fronthaul is optional, depending on the performance.
- Legacy ODN reuse. (Shall)
 - □ This requirement has been agreed in previous discussion.

Data Rate Choices

Data rate of 1G-EPON

Downstream: 1G(1.25Gbps)

 \square Upstream: 1G(1.25Gbps)

Data rate of 10G-EPON

Downstream: 10G(10.3125Gbps)

 \Box Upstream: 1G(1.25Gbps, Asymmetric) or 10G(10.3125Gbps, Symmetry)

What will be the most feasible single wavelength speed in NG-EPON?

Downstream: 25G? or 40G?

□ *Upstream:* 10*G* ? or 25*G* ?

Link Budget 1

Rx Sensitivity:

□ The relationship between Rx Sensitivity (Si APD@BER 10⁻⁹) and Baud rate is:

$$P_{\rm min} \propto B^{7/6}$$

□ So the Rx Sensitivity of 25Gbps/40Gbps (Si APD@BER 10^{-9}) is about 4dB/7dB lower than that of 10G.

Link Budget II

Dispersion Penalty:

□ Dispersion tolerance (1dB power penalty) in TDM PON described by :

$$D_{[ps/km/nm]} * L_{[km]} \approx 10^5 / B_{[Gbit/s]}^2$$

Where, D, L and B are the dispersion coefficient, transmission distance and data rate respectively.

□ With the data rate upgrade from 10G to 25G(40G), the dispersion tolerance will be 6(16) times lower, and the dispersion penalty will be 3.3dB(9.3dB).

Data rate (Gbps)	Dispersion Tolerance (ps/nm)	Max D (ps/km/nm) for penalty <1dB in 20km transmission	Dispersion penalty for 20km transfer of 1.55um(dB)
<u>10</u>	<u>1000</u>	<u>50</u>	<u>0.124</u>
<u>25</u>	<u>160</u>	<u>8</u>	3.2926
<u>40</u>	<u>62.5</u>	<u>3.1</u>	<u>9.26</u>

■ Multi-level modulation is a good way to reduce dispersion penalty. But...

- > It tends to reduce the receiver sensitivity (loss budget) as well.
- > Cost and complexity must be concerned.

Link Budget III

theoretical analysis

Data rate (Gbps)	<u>Receiver</u> <u>Sensitivity(dBm)</u>	<u>Dispersion</u> <u>Penalty(dB)</u>	<u>Link Budget(dB)</u>	
<u>10</u>	<u>a</u>	<u>b</u>	<u>C</u>	<u>Existing</u>
<u>25</u>	<u> </u>	<u> </u>	<u> </u>	<u>challenge</u>
<u>40</u>	<u> </u>	<u> </u>	<u>↑16.3</u>	<u>Huge challenge</u>
<u>Multi-level</u> <u>modulation</u>	$\sqrt{\ }$? (depends on the modulation type)	<u>≈b</u>	<u>↑?</u>	<u>Cost?</u> <u>Complexity?</u>

Link Budget IV

Simulation setup

Data rate = 25Gbps

Laser: 25G EML (3dB

bandwidth=19GHz)

Output power of laser: 3dBm

PD: 25G APD

TIA: 3dB bandwidth=19GHz

Splitter ratio = 1:32

Structure of simulation environment

Link Budget V

Simulation results

Link Budget VI

Simulation results

- > 20km transmission length can not be supported when EML is C band and data rate is 25Gbps from the simulation results.
- > O band is OK from the simulation, but there is another problem that the receiver sensitivity of 25G PIN/APD is about -17dbm/-23dbm@ 1e-3 in theory. So the power budget is still not enough.

Available Wavelength Resources

- > Spectrum availability for high speed TDM PON in NGEPON is very limited if coexistence with 1G-EPON, 10G-EPON and RF overlay.
- New fiber attenuation in E band with water peak is less than 0.4dB/km, maybe E band can be considered in NG-EPON due to lower dispersion coefficient D.

Technology and Device Maturity

- > The rate class of optoelectronic devices will be 25G or 40G in High Speed TDM PON applications.
 - 25G or 40G MAC
 - □ 25G or 40G electrical devices (LDD, TIA, Serdes, etc)
 - 25G or 40G optical devices (Laser, PD, etc)
- 25G or 40G MAC
 - Considering the success in long haul optical 100G/200G transport, 25G or
 40G MAC is promising.
- 25G or 40G electrical devices (LDD, TIA, Serdes, etc)
 - This part is mature in practical applications.
- 25G or 40G optical devices(Laser, PD, etc)
 - 25G or 40G lasers in O band are available, but other bands have not seen
 large-scale use. Also relative cost is very high, industry chain is not mature.
 - 25G or 40G PIN receivers are available, but its sensitivity is a concern, which will result in a lack of power budget in access network applications.
 - 25G APD is a huge challenge, and still in the research process.

Summary

- > High Speed TDM PON have some merits, such as
 - ODN reuse.
 - Simple structure.
 - Maybe can reduce energy consumption in the OLT because N customers share a single OLT transmission and reception?
- > But also have many demerits, such as
 - Requires all ONUs to have transceivers operating at the overall PON data rate, but many customers only require very little data capacity.
 - Link budget (C band, 25Gbps NRZ) is not sufficient based on theoretical analysis and simulation results, and O band performance is also affected by receiver sensitivity of 25G PD. —— A fatal problem.
 - 25G/40G optical devices (C band EML, APD) are not technically mature, cost is very high. ——Challenge.
 - Multi-level modulation tends to reduce the receiver sensitivity (loss budget) as well.
- > From above all, it seems that 10Gbps per wavelength has many practical advantages in comparison to the higher rates.

Thank you!

