Google

Super-PON CFI (skeleton version)

Scale Fully Passive Optical Access Networks to Longer Reaches and to a Significantly Higher Number of Subscribers

> Claudio DeSanti Liang Du

CFI Objectives

- Measure the interest in studying Super-PON Ethernet architectures
- We do not need to:
 - Fully explore the problem
 - Debate strengths and weaknesses of solutions
 - Choose a solution
 - Create a PAR or 5 Criteria
 - Create a standard
- Anyone in the room may vote or speak

Agenda

- Overview
- Market Need
- Technical Feasibility
- Why Now?
- Straw Polls

Super-PON: A Different Way to Scale

- Ethernet traditionally scaled (in speed) in powers of 10
- Then 802.3 recognized the need for different scaling factors for different markets/applications
 - And 40Gb/s, 25Gb/s, 50Gb/s, 2.5Gb/s, 5Gb/s, 200Gb/s, 400Gb/s came out
- Super-PON intends to study PON scalability in different dimensions to address different/complementary markets/applications
 - Not in speed (802.3ca is already doing that),
 - But in reach (from ~10-20Km to ~40-50Km) ...
 - ...and in number of subscribers for fiber strain (from ~64 to ~1024)
- Optimize OSP resources utilization

From here...

...to here

Super-PON Architecture

ONU 1

Super-PON Summary

- A DWDM system
 - Multiplexes multiple channels over a single feeder fiber
 - Separates the channels with a passive optical router (AWG) in the OSP
 - Supports more (customers) with less (fiber)
- An amplified system
 - Achieves long reach through amplification
 - Single amplifier for all channels to reduce the cost impact
- Supports different types of subscribers
 - Cost effective asymmetric ONUs for residential customers
 - Guaranteed performance symmetric ONUs for business customers

Agenda

- Overview
- Market Need
- Technical Feasibility
- Why Now?
- Straw Polls

Super-PON Applicability Summary

- Green field:
 - Optical fiber plant build simplification (lower CAPEX and TTM)
 - Support for both residential and point-to-point applications
- Brown field (optical fiber plant already in place):
 - CO consolidation for CORD
 - Re-use existing fiber plant and transform peripheral COs from (managed) active sites to (unmanaged) holders of passive components
 - Increased typical utilization of OLT ports
 - Point-to-Point support for (5G) cellular and specific subscribers
 - OSP expansion (i.e., additional OSP build to complement the existing OSP)

Use Cases

- New optical plants
 - Greenfield case
 - Concentrate active equipment in less central offices
 - Reduce the amount of fiber needed to build an OSP
 - New developments in US
 - Developing countries
- Smart cities
- Support for 5G cellular
- Extended EPON questions
- CO consolidation for CORD deployments
- Fiber shortage

Use Case: Super-PON OSP

Conventional PON: 16 COs

Feeder fiber

Super-PON: 3 COs

- Significantly smaller number of COs
- Better fiber utilization
 - Much less backbone and feeder fiber
 - Lower OSP building cost

Advantages

- Less fibers needed (DWDM)
 - Enables smaller/fewer cables
 - From 432-fiber cables to 12/48-fiber cables
- Lower OSP building cost
 - Smaller cables can be longer and are easier to bend/handle
 - Allows use of micro-trenching and directional boring techniques
 - Easier to repair
- CO consolidation
 - The same number of feeder fibers can serve a much greater area
 - Less COs \rightarrow less OPEX

About Trenching...

Traditional Trenching

Directional Boring

Micro Trenching

...and Repairs

A 432-fiber cable:

- Contains 36 ribbons of 12 fibers
- ~10 min to splice a ribbon
- ~6 hours total to splice a broken cable
- Additional ~2 hours for cable manipulation
- Average time to repair a cable damage: ~8 hours

A 24-fiber cable:

- ~40 mins total to splice a broken cable
- Additional ~1 hour for cable manipulation
- Average time to repair a cable damage: ~1 hour 40'

Use Case: US New Real Estate Developments (from Comcast)

- New single family homes are being built now, after the last recession
- This is a greenfield environment where Super-PON is quite interesting

Use Case: Developing Countries

- Developing countries are beginning to plan for fiber access networks
 - E.g., India
- These are greenfield scenarios
 - Super-PON is an interesting option

Use Case: Smart Cities

- Lot and lot of connectivity end-points needed to support the network of sensors and actuators at the basis of:
 - Smart lighting
 - Smart transportation
 - Smart infrastructure
 - Smart IoT devices
 - Smart data
- Need to do more (end-points) with less (fiber strains from the CO)
- Example: Sidewalk Lab project in Toronto, Canada

Use Case: 5G Cellular Front-Haul Support

- No 50Km reach (max 10Km for 5G delay requirements)
- Multiplex multiple channels (q) in the CAWG feeder fiber
 - Large deployment radius
- The CAWG serves up to q cellular towers
 - Small deployment radius

Example of 5G Support

- From here...
 - Each tower needs its own fiber from the central office

Example of 5G Support

- ...to here
 - Leverage Super-PON DWDM to carry multiple channels over one fiber

Extended EPON Questions

- How to leverage EPON architecture in rural areas
- How to further increase subscriber density in CO
- How to decrease the cost of connection per subscriber
- How to serve more people at larger distance from CO using IEEE 802.3 EPON equipment and avoid proprietary solutions

Consolidated CO

CORD is now cost effective

Use Case: Fiber Shortage

Use Case: DOCSIS Node Splitting

Use Case: DOCSIS to FTTH

Agenda

- Overview
- Market Need
- Technical Feasibility
- Why Now?
- Straw Polls

Topics

- Mostly a PMD-only project
 - Similar to 802.3bk
 - The only additional thing could be the possible 2.5G-EPON speed addition
- Low cost tunable lasers
- DWDM (20 channels per fiber)
- MUX/Amp
- Athermal CAWG

Super-PON PMD – Point to Point

Claudio DeSanti

Speed Considerations

- For residential support, an EML laser in the OLT and a DML laser in the ONU allow:
 - 10Gb/s downstream 2.5Gb/s upstream if the MUX/Amp does not contain dispersion compensation
 - 25Gb/s downstream 10Gb/s upstream if the MUX/Amp does contain dispersion compensation
- A 10Gb/s downstream 2.5Gb/s upstream ONU is cost effective for residential users
 - Symmetric point-to-point links allow optimal support for higher speed business users
- Defining 2.5G-EPON upstream is a very doable effort
 - Just downclock 10G-EPON or 25G-EPON
 - Allow XGMII to have different RX_CLK and TX_CLK
 - Assign two bits in the REGISTER_REQ MPCPDU and in the DISCOVERY GATE MPCPDU for discovery
 - Specify the optical PMD parameters
- Enables to leverage for Ethernet the existing 2.5Gb/s GPON optical ecosystem

Agenda

- Overview
- Market Need
- Technical Feasibility
- Why Now?
- Straw Polls

Why Now?

- The Software Defined Central Office is getting real
 - CORD is an example
 - Requires CO consolidation to be cost effective
 - Super-PON complements in the access network the consolidation made possible in compute and services by CORD
- Super-PON point-to-point support helps (5G) cellular deployments
- Super-PON is advantageous for new US residential developments
- Developing countries are planning for greenfield fiber networks
- Technology advancements made cooled lasers and tunable cooled lasers more affordable than before
 - Enables narrow DWDM channel bands

Supporters

•

Agenda

- Overview
- Market Need
- Technical Feasibility
- Why Now?
- Straw Polls

Straw Polls

- Should a study group be formed?
- Would I participate in such a Study Group?
- Would my company support participation in such a Study Group?

Thank you