IEEE 802.3 NEA AD HOC

IEEE 802.3

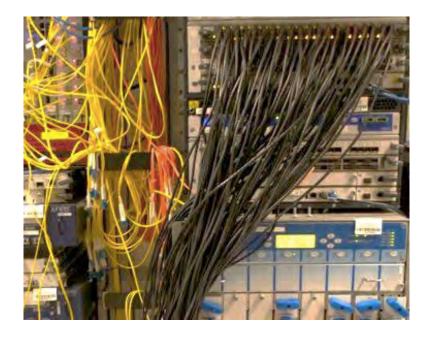
CALL FOR INTEREST

"BEYOND 400 GbE"

DRAFT DEVELOPMENT OF

CFI CONSENSUS PRESENTATION

JOHN D'AMBROSIA FUTUREWEI, U.S. SUBSIDIARY OF HUAWEI

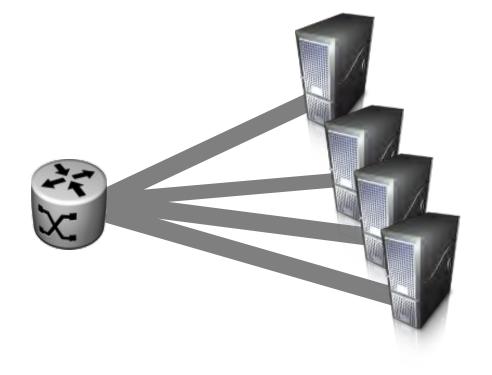

OBJECTIVE FOR THE MEETING

- To <u>measure the interest</u> in starting a study group to address <u>Beyond 400 Gb/s Ethernet</u>
- We don't need to
 - Fully explore the problem
 - Debate strengths and weaknesses of solutions
 - Choose any one solution
 - Create PAR or five criteria
 - Create a standard or specification
- Anyone in the room may speak / vote
- RESPECT... give it, get it

AGENDA

- Introduction
- Market Perspective
- Achieving Beyond 400 GbE
- Why Now?
- Straw Polls
- Future Work

LINK AGGREGATION



Courtesy, David Ofelt, Juniper.

- Problem: Need to scale the Network (density & cost)
- Temporary Solution: Link Aggregation
- Pros: Addresses bandwidth requirements between releases of faster links
- Cons:
 - Non-deterministic performance
 - Fastest flow limited to individual link speed
 - Exponential bandwidth growth implies:
 - Exponential growth in number of links
 - Growth in operational & management issues
 - Doesn't scale forever.
- Faster links address these issues <u>and they will be LAGGed!</u>

WHAT ARE WE TALKING ABOUT?

Scenario #1
Point-to-point link

Related Scenario
Port supports Break-out

OTHER SCENARIOS

Scenario #2 80km over DWDM Systems Point-to-Point Ethernet Point-to-Point Ethernet **OUR SCOPE** Scenario #3 X,000 km **IEEE** defined Ethernet **IEEE** defined Ethernet ITU-T defined "Core OTN Transport" **OUR SCOPE OUR SCOPE** carrying Ethernet traffic

MARKET PERSPECTIVE

THE SONG REMAINS THE SAME

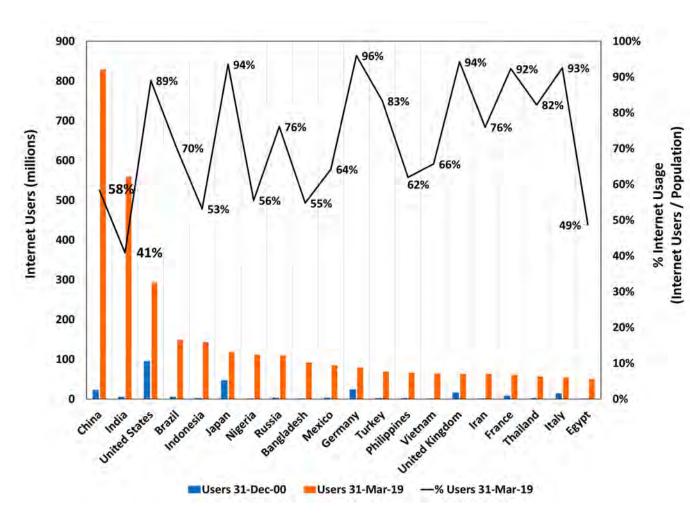
Increased
of users

Increased

access

methods

and rates

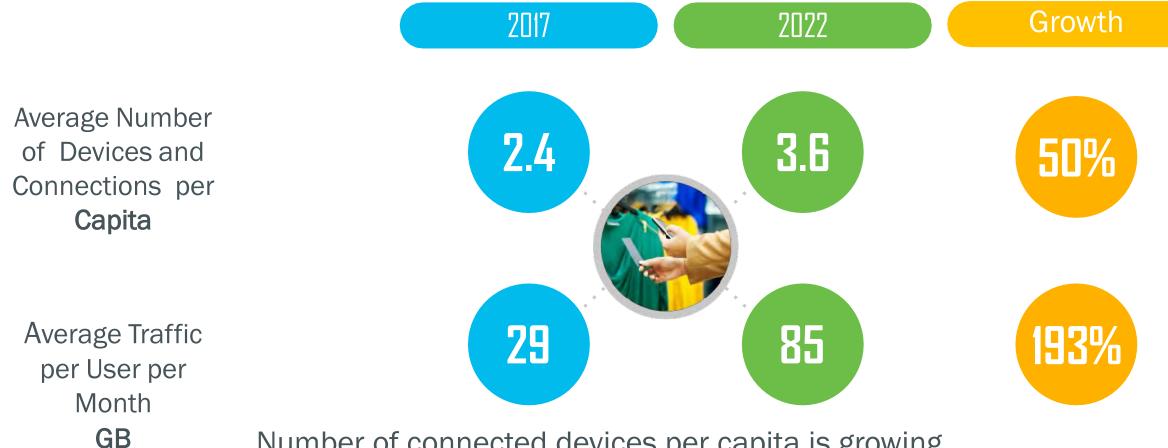

Increased

services

Explosion

and rates

INTERNET USAGE - TOP 20 COUNTRIES


Observations

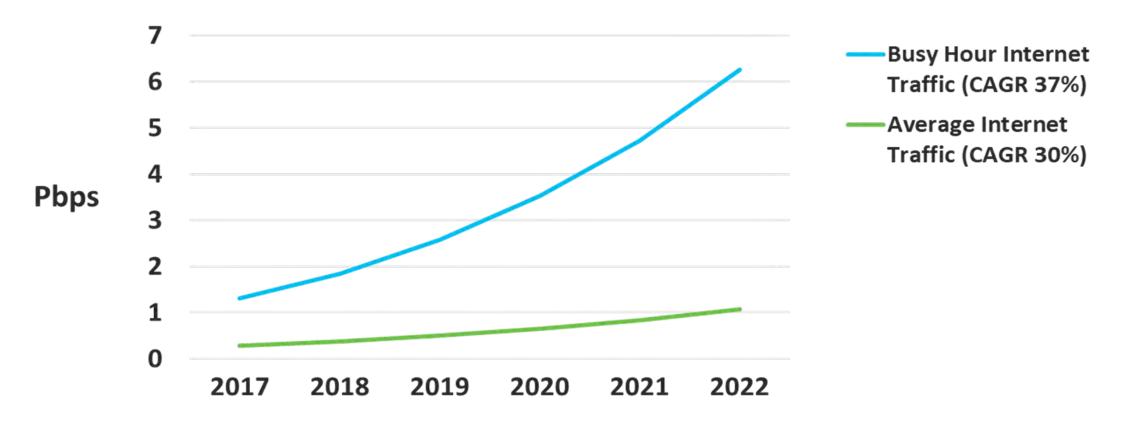
- Only 8 countries had at least 80% connectivity
- ≈2 billion people in Top 20 countries remain to be connected
- China has the largest number of internet users (829 million), but only 58% of the population was connected
- India has the second largest number of internet users (560 million), but only 41% of the population was connected

Source: Internet World Stats (as of 31 March 2019)

https://www.internetworldstats.com/stats.ht

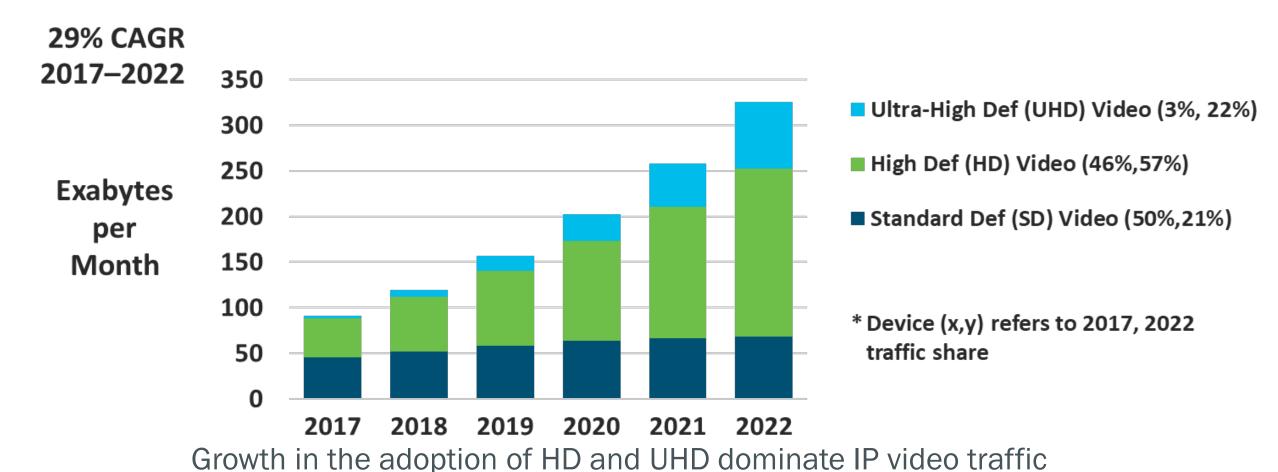
GLOBAL DEVICES / CONNECTIONS AVERAGE PER CAPITA

Number of connected devices per capita is growing
The average traffic per user is growing at a much faster rate

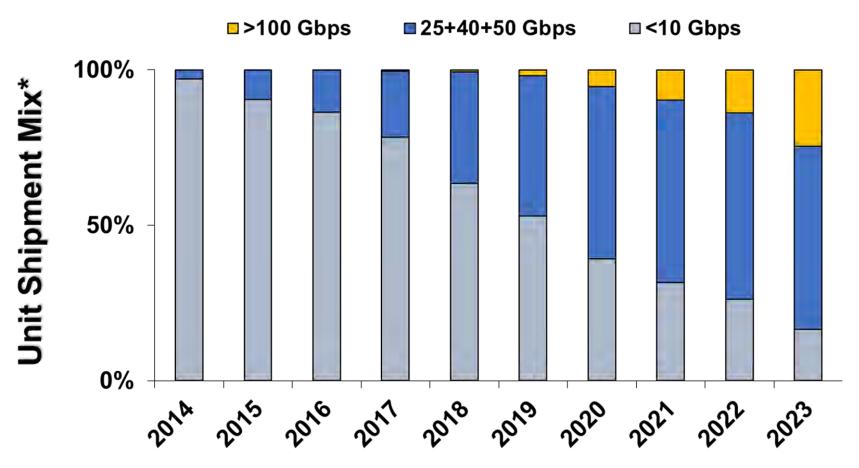

Source: Cisco VNI Forecast Update, http://www.ieee802.org/3/ad_hoc/bwa2/public/calls/19_0624/nowell_bwa_01_190624.pdf

GLOBAL DEVICE CONNECTION GROWTH (AVERAGE)

North America			, , ,	Western Europe					Central & Eastern Europe				
(Mb/s)	2017	2022	CAGR		(Mb/s)	2017	2022	CAGR	•	(Mb/s)	2017	2022	CAGR
Fixed Broadband	43.2	94.2	16.9%		Fixed Broadband	37.9	76.0	14.9%		Fixed Broadband	32.8	46.7	7.3%
Wi-Fi	37.1	83.8	17.7%	5	Wi-Fi	25.0	49.5	14.6%	1	Wi-Fi	19.5	32.8	11.0%
Cellular	16.3	42.0	20.8%		Cellular	16.0	50.5	25.8%		Cellular	10.1	26.2	21.0%
2 mg		ر م			<u>{</u>			w	~		31	È.	
La	tin Americ	ca			M	iddle East &	Africa	~~	Į		Asia Pacif	ic	
La (Mb/s)	atin Americ 2017	ca 2022	CAGR		M (Mb/s)	iddle East &	Africa 2022	CAGR	T T	(Mb/s)	Asia Pacif	ic 2022	CAGR
Mb/s) Fixed			CAGR 19.2%					CAGR 21.0%		(Mb/s) Fixed Broadband			
	2017	2022			(Mb/s) Fixed	2017	2022)_)		Fixed	2017	2022	CAGR 16.4% 18.8%


Source: Cisco VNI Forecast Update, http://www.ieee802.org/3/ad_hoc/bwa2/public/calls/19_0624/nowell_bwa_01_190624.pdf

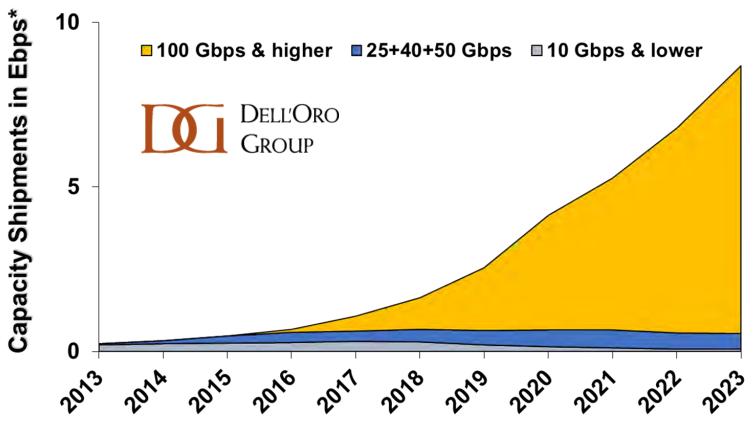
GLOBAL BUSY-HOUR VS AVERAGE HOUR INTERNET TRAFFIC


Source: Cisco VNI Forecast Update, http://www.ieee802.org/3/ad_hoc/bwa2/public/calls/19_0624/nowell_bwa_01_190624.pdf

IMPACT OF "DEFINITION" ON IP VIDEO GROWTH

Source: Cisco VNI Forecast Update, http://www.ieee802.org/3/ad hoc/bwa2/public/calls/19 0624/nowell bwa 01 190624.pdf

ENTERPRISE AND CLOUD SERVER UNIT SHIPMENTS

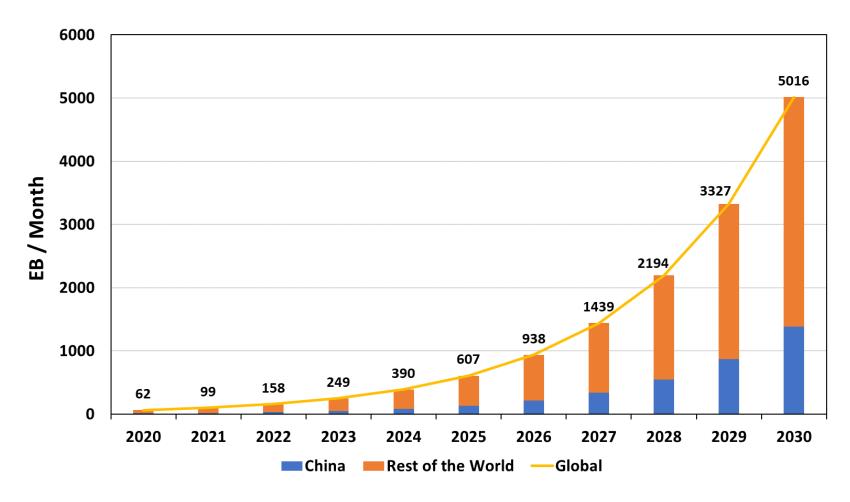


Note - Current timeline doesn't take into consideration potential disruption to the supply chain due to COVID-19

Source: Data Center Ethernet Switch and Server Bandwidth Assessment for IEEE, http://www.ieee802.org/3/ad_hoc/bwa2/public/calls/19_0927/fung_bwa_01a_190927.pdf

^{*} Percent of annual server shipments categorized by speed of the attached Controllers and Adapters

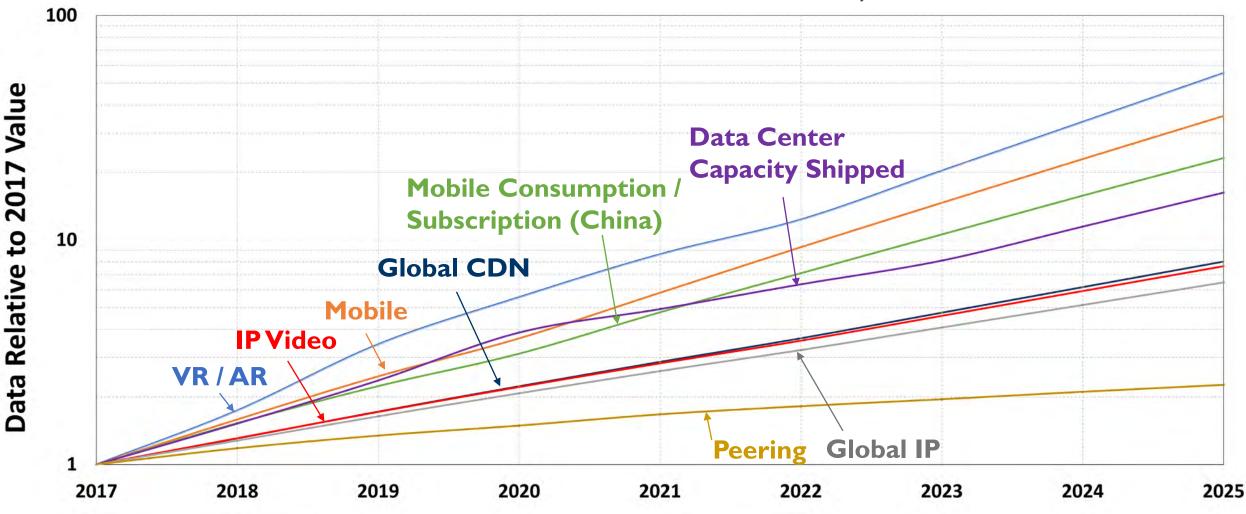
DATA CENTER ETHERNET SWITCH CAPACITY SHIPMENTS

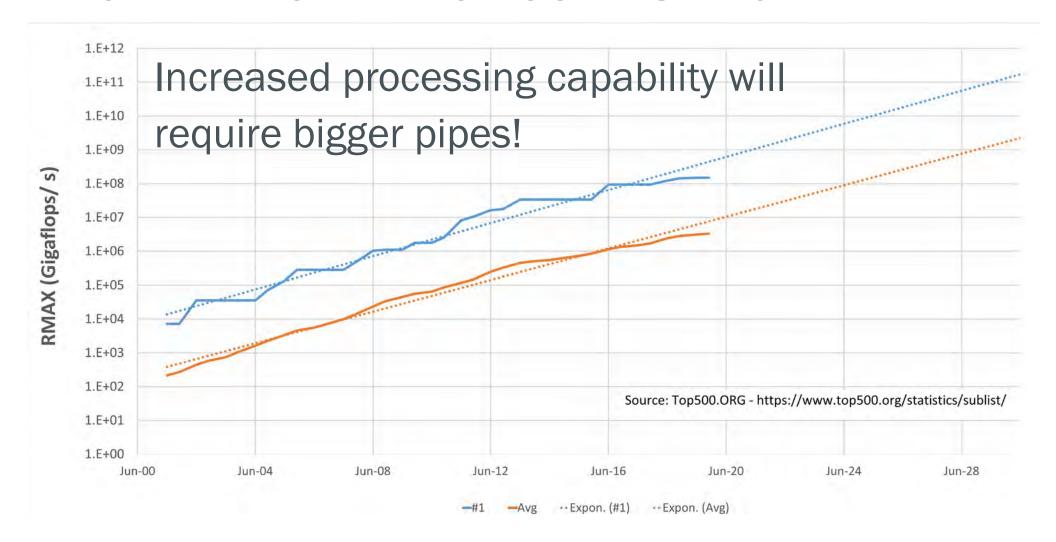


Source: Data Center Ethernet Switch and Server Bandwidth Assessment for IEEE, http://www.ieee802.org/3/ad_hoc/bwa2/public/calls/19_0927/fung_bwa_01a_190927.pdf

Note - Current timeline doesn't take into consideration potential disruption to the supply chain due to COVID-19

^{*} Annual port capacity shipped on Data Center Ethernet Switches measured in exabits per second


ESTIMATION OF MOBILE TRAFFIC


Global mobile traffic is expediential and may even be underestimated

Source: Report ITU-R M.2370-0: IMT traffic estimates for the years 2020 to 2030, https://www.itu.int/pub/R-REP-M.2370-2015

ETHERNET BANDWIDTH ASSESSMENT, PART II

HIGH PERFORMANCE COMPUTING

IMPACT OF AI

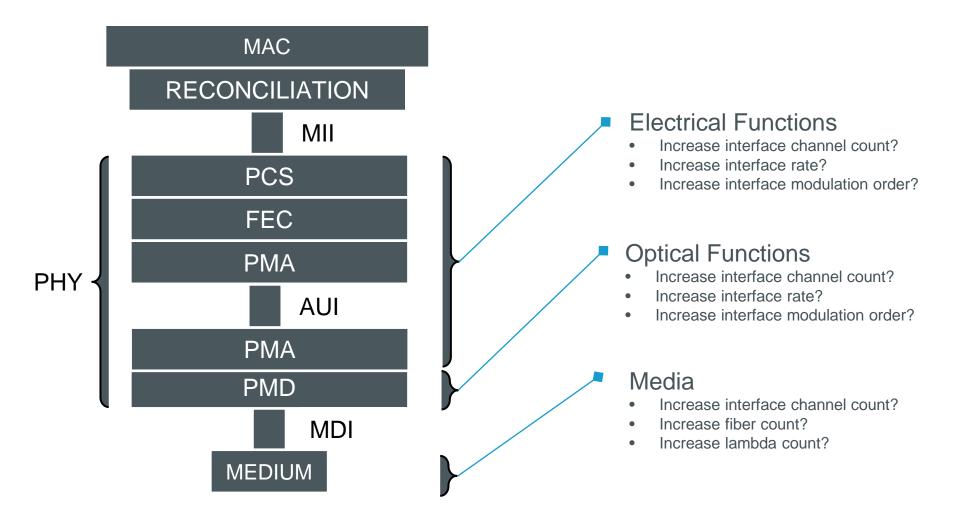
Need Input

IMPACT OF 5G

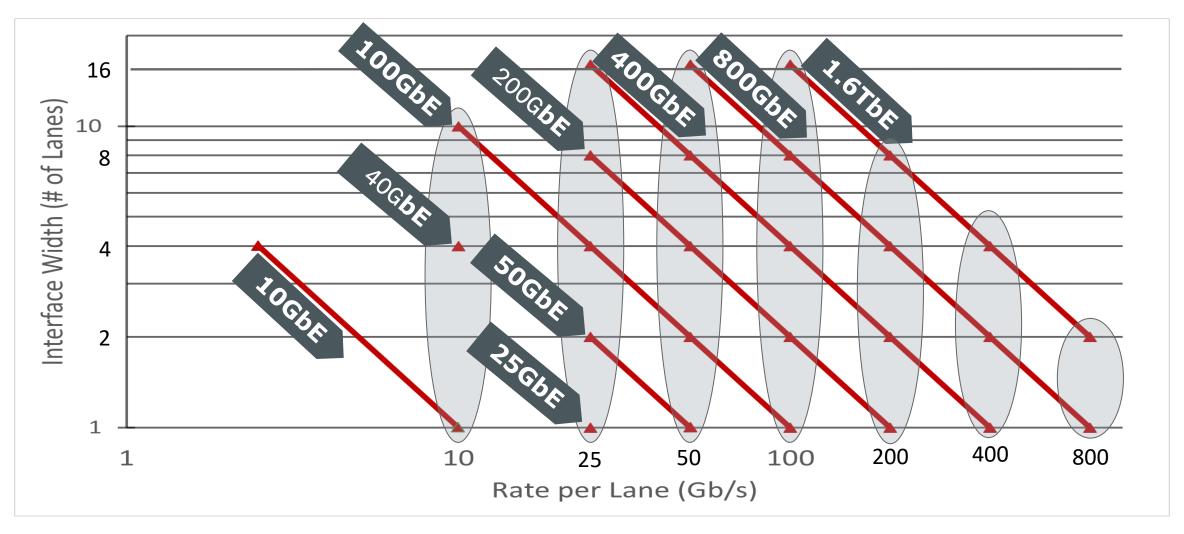
Need Input

COVID-19 TRENDS, APRIL 2020

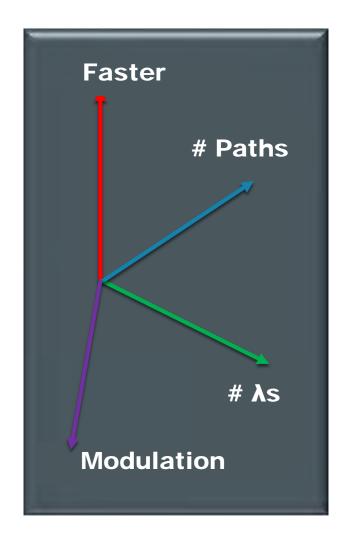
Source - Inphi blog post 'Bandwidth in the Age of COVID-19' posted 22nd April 2020 by Ford Tamer, President and CEO, Inphi Corporation https://www.inphi.com/blog/>



SUMMARY


Under Construction

ACHIEVING BEYOND 400 GbE


THE CHALLENGES TO BEYOND 400 GbE

THE BASIC MATH OF ETHERNET

THE PATH TO HIGHER SPEEDS

The never-ending balancing acts!

EXAMPLES 400 GBE FAMILY

	Width	# Fibers / Conductor Pairs (one direction)	ለ's per fiber	# Fibers / Conductor Pairs (total)	Modulation	Baud (GBd)
400GAUI	16	16		32	NRZ	26.5625
	8	8		16	PAM4	26.5625
	4	4		8	PAM4	53.125
400GBASE-SR	16	16	1	16	NRZ	26.5625
	8	8	1	8	PAM4	26.5625
	4	4	1	4	PAM4	53.125
400GBASE-SR4.2	4 fibers x 2	8	2 (1 Tx / 1 Rx)	8	PAM4	26.5625
400GBASE-DR4	4	4	1		PAM4	53.125
400GBASE-FR	8	1	8	1	PAM4	26.5625
	4	1	4	1	PAM4	53.125
400GBASE-LR(-6)	8	1	8	1	PAM4	26.5625
	4	1	4	1	PAM4	53.125
400GBASE-ER	8	1	8	1	PAM4	26.5625
400GBASE-ZR	1	1	Tx /Rx may be on 1 or 2	1 OR 2	DP-16QAM	59.84375

SERDES

Need Input

RESEARCH - BEYOND 100 GBd

- Summary of research related to beyond 100 GBd
 - 200 Gb/s PAM4 B. Baeuerle, et al. "Reduced Equalization Needs of 100 GHz Bandwidth Plasmonic Modulators." JLT 37(9): 2050-2057.(2019).
 - W. Heni, et al.. "Ultra-High-Speed 2: 1 Digital Selector and Plasmonic Modulator IM/DD Transmitter Operating at 222 Gbaud for Intra-Datacenter Applications" J. LightwaveTechnoly. (2020).
 - Others

COHERENT

- 100 Gb/s Coherent
 - ITU-T
 - CableLabs
 - IEEE P802.3ct
- .200 Gb/s Coherent
 - CableLabs
- 400 Gb/s Coherent
 - OIF
 - ITU-T
 - IEEE P802.3cw

INDUSTRY ACTIVITIES

- Ethernet Technology Consortium (https://ethernettechnologyconsortium.org/)
 - "The 800 GbE specification introduces a new media access control (MAC) and Physical Coding Sublayer (PCS)"
- 800G Pluggable MSA (https://www.800gmsa.com/)
 - "...define interface specifications of the 800G pluggable optical modules,..."
- QSFP-DD800 MSA announces initial hardware specification(https://bit.ly/QSFPdd800)
 - "...development of high-speed, double-density QSFP modules which support 800 Gbps connectivity..."
- News Future of Coherent ?
 - Successful trial of 800 Gb/s single-wave transmission over 950 km https://bit.ly/2Wdkh8e
 - Platform supporting 200 Gb/s to 800 Gb/s single-carrier https://bit.ly/2KLpW05
 - "Industry's first 800G tunable ultra-high-speed optical module" https://bit.ly/2yTYNFK
 - "Verizon says it has successfully transmitted an 800-Gb/s wavelength on its live network" https://bit.ly/3d2GX1M

SUMMARY

Under Construction

WHY NOW?

Under Construction

THE EXPONENTIAL FACTOR

"The greatest shortcoming of the human race is our inability to understand the exponential function."

Albert Bartlett – American Scholar

CONTRIBUTORS

Under Construction

SUPPORTERS

Under Construction

STRAW POLLS

CALL-FOR-INTEREST

- Should a Study Group be formed for "Beyond 400 Gb/s Ethernet?
- YES
- No
- Abstain

Room Count

PARTICIPATION

I would participate in the "Beyond 400 Gb/s Ethernet" Study Group in IEEE 802.3

Tally:

 I believe my company would support participation in the "Beyond 400 Gb/s Ethernet" Study Group in IEEE 802.3
 Tally:

FUTURE WORK

To Be Determined by Potential Rules Changes

THANK YOU!