

PAM4 DSP Architecture Advances for Beyond 400GbE

Ilya Lyubomirsky, Jamal Riani, and Arash Farhoodfar, Inphi Corp. IEEE 802.3 NEA Beyond 400GbE CFI Consensus Development, Sept. 14, 2020

- 100G per Lambda/per Lane PAM4 Rx DSP Architectures
- Identify Potential DSP Building Blocks for Beyond 400GbE
- Low Power MLSD
- Soft FEC for Low Latency Higher Coding Gain
- Conclusions

100G PAM4 Rx DSP Architecture

Maximum Likelihood Sequence Detection (MLSD)

- Fully equalizing postcursor tap (f) through the FFE is expensive in terms of noise enhancement →high SNR penalty vs channel IL
- Commonly a DFE is used to handle postcursor ISI:
 - Only channel energy at main tap is used for symbol detection
 - Postcursor energy is thrown away \rightarrow suboptimal
- Optimal detection has to use all signal energy. Both symbol k and symbol k+1 contains directly information on PAM symbol k, through main tap or postcursor tap
 - Such optimal detection is achieved by applying sequence detection seeking to find the Maximum Likelihood sequence

Measurement Results for 53Gbaud LR PAM4 SerDes

Variable IL measurement setup for 7nm SerDes test chip

Measured BER vs. Channel IL

200G Dispersion Penalty Simulation Results: Looking Ahead to Beyond 400GbE

Concatenated codes: use two or more codes in tandem

- inner code (code closest to the channel) is well-tuned for the particular channel
- outer code "cleans up" the errors left by the inner code
- overall rate $R = R_{inner} \cdot R_{outer}$
- often the inner code can perform soft-decision decoding

Source: Frank Kschischang, "Introduction to Forward Error Correction," *OFC Short Course, 2018*

Low Complexity/Low Latency Soft Decision FEC (SFEC) Measurement Results

SFEC Performance: RX SNR vs BER

SFEC latency < 1 ns SFEC power 55-65 mW per 100G lane

Second Generation SFEC Simulation Results

Source: "Next Generation PON and Data Center Interconnect: Exploring Synergies on FEC," IEEE Summer Topical, July, 2019

- We reviewed PAM4 DSP technology deployed today in 100G per lane electrical SerDes as well as 400G FR4/DR4/LR4 optical modules
- Rx DSP equalization capabilities far exceed the assumptions that went into PAM4 TDECQ reference equalizer; DSP based equalizers can include 10-30 tap FFE, 1-tap DFE, and MLSD
- Advancements in high speed ADC technology also open the way toward low latency higher gain soft decision FEC; such soft decision FECs are already in use for enhancing the reach and/or lowering optical module costs
- Beyond 400GbE project will be able to leverage these DSP advancements