IEEE 802.3 NEA Ad hoc 29 Oct 2020

IEEE 802.3 Call for Interest CFI Consensus Presentation

"Beyond 400 Gb/s Ethernet"

OBJECTIVE FOR THE MEETING

- To measure the interest in starting a study group to address "Beyond 400 Gb/s Ethernet"
- We don't need to
 - > Fully explore the problem
 - Debate strengths and weaknesses of solutions
 - Choose any one solution
 - > Create PAR or five criteria
 - Create a standard or specification
- Anyone on the call may speak / vote
- > RESPECT... give it, get it

Contributors

- John D'Ambrosia, Futurewei, U.S.Subsidiary of Huawei
- Matt Brown, Huawei Canada
- > Joel Goergen, Cisco
- Mark Gustlin, Cisco
- Cedric Lam, Google
- Mike Li, Intel
- Ilya Lyubomirsky, Inphi
- Osa Mok, Innolight
- Gary Nicholl, Cisco

- > Shawn Nicholl, Xilinx
- Mark Nowell, Cisco
- > David Piehler, Dell Technologies
- > Ted Sprague, Infinera
- > Rob Stone, Facebook
- > Jim Theodoras, HG Genuine
- Nathan Tracy, TE Connectivity
- Xinyuan Wang, Huawei
- George Zimmerman, CME Consulting

- > Also
 - > IEEE 802.3 2020 Ethernet Bandwidth Assessment
 - > IEEE 802.3 NEA Ad hoc

Today's Panel

- > Speakers
 - > John D'Ambrosia, Futurewei (U.S. Subsidiary of Huawei)
 - > Ray Nering, Cisco
 - > Adam Healey, Broadcom
- Additional Panelists
 - > Cedric Lam, Google
 - > Rob Stone, Facebook

AGENDA

- > Introduction
- > Presentations
 - Market Pressures for Beyond 400 GbE
 - > The Technical Roadmap to Beyond 400 GbE
 - > Beyond 400 GbE Why Now?
- > Straw Polls
- > Future Work

THE SCOPE OF ETHERNET TODAY

MARKET PRESSURES FOR BEYOND 400 GbE

Presented by Ray Nering

THE SONG REMAINS THE SAME

2020 Ethernet Bandwidth Assessment (BWA) documented latest analysis of industry bandwidth needs and driving factors

```
Increased x methods and x rates Increased = Bandwidth Explosion
```

- 2020 Ethernet BWA
 - Report https://bit.ly/802d3bwa2
 - > Tutorial https://bit.ly/802d3bwa2_tut
- > Reference slides in Appendix: Backup Slides

The 2020 Ethernet Bandwidth Assessment

DATA CENTERS CONTINUE AS A PRIMARY DRIVER

DC Traffic Continues to Grow Rapidly (Regular Servers)

Courtesy - Cedric Lam, Google

Hyperscale Ethernet Deployment – Total Switch Bandwidth

Actual network deployment of higher capacity switches is driven by traffic demands as well as operational considerations:

- Cost
- Power
- Network Architecture (e.g. Radix)

Deployment can occur quite quickly after availability

Key observation: Network needs are driving switch capacity developments

Courtesy of: Rob Stone, Facebook Cedric Lam, Google Mark Nowell, Cisco

Hyperscale Ethernet Deployment – Port Speed

Key observation:

Network capacity needs are driving increased max port speeds.

Beyond 400 GbE port speed is required to support continued bandwidth demand

Courtesy of: Rob Stone, Facebook Cedric Lam, Google Mark Nowell, Cisco

EXAMPLE EMERGING APPLICATION – 5G BACKHAUL

Source:	
http://www.ieee802.org/3/B10K/public/18_01/wang_b	10k
_01b_0118.pdf	

29 Oct 2020

# of Networks Deployed	LTE	LTE Advanced	5G
Africa	145	42	4
Asia & Pacific	162	74	29
Eastern Europe	93	59	14
Latin America & Caribbean	127	50	8
Middle East	44	29	12
U S & Canada	20	11	7
Western Europe	88	70	31
Global Totals	683	335	105

Source: as of 8/14/2020, https://www.5gamericas.org/resources/deployments/

ARTIFICAL INTELLIGENCE & COMPUTE

- First Era (Before 2012)
 - Moore's Law 2-year doubling
 - Uncommon to use GPUs for machine learning
- Modern Era (2012 and later)
 - 2012 2014: most results used 1-8 GPUs rated at 1-2 TFLOPS
 - 2014 2016: large-scale results used 10-100 GPUs rated at 5-10 TFLOPS
 - 2016 2017: greater algorithmic parallelism (huge batch sizes, architecture search, expert iteration), specialized hardware (TPUs), faster interconnects

Source – OpenAI blog post 'AI and Compute' addendum 'Compute used in older headline results' posted 7th November 2019 by Girish Sastry, Jack Clark, Greg Brockman and Ilya Sutskever https://openai.com/blog/ai-and-compute/>.

MORE OF THE SAME.....

COVID-19 TRENDS, APRIL 2020

Source - Inphi blog post 'Bandwidth in the Age of COVID-19' posted 22nd April 2020 by Ford Tamer, President and CEO, Inphi Corporation < https://www.inphi.com/blog/>

SUMMARY

- Bandwidth growth continues and underlying factors indicate further bandwidth growth
 - Video (recorded and live) and mobile!
 - ➤Increasing delta between "peak" and "average"
- New applications fueling bandwidth growth
- > In today's COVID-19 world
 - Connectivity has been critical!
 - > "Instantaneous" growth in multiple application spaces
 - > Moving to telepresence, i.e. streaming video
- > "Up and to the right" continues

THE TECHNICAL TOOLBOX TO BEYOND 400 GbE

Presented by Adam Healey

The Entire Ethernet Family Needs Considered

THE CHALLENGES TO BEYOND 400 GBE

MAC/PCS Technical Feasibility

The options below are very feasible in near term technology (as an example, actual rate(s) are TBD)

MAC Rate	Technology Node	Device Type	Bus Width	Clock Rate
800 Gb/s	5 nm	ASIC	1024 b	800 MHz
	5 nm	ASIC	512 b	1.6 GHz
	7 nm	FPGA	1536 b	533 MHz
1.6 Tb/s	5 nm	ASIC	2048 b	800 MHz
	5 nm	ASIC	1024 b	1.6 GHz
	5 nm (or equiv)	FPGA	3072 b	533 MHz

Source - Mark Gustlin, Cisco; Mike Li, Intel; Shawn Nicholl, Xilinx

PCS/FEC

- Previous PCS concepts could be re-used
 - > 64b/66b, transcoding, scrambling, AMs
- Will likely want a new stronger FEC for 200 Gb/s lane (if the project chooses to define 200 Gb/s per lane)
 - Multiple FEC options for direct detect, coherent light and longer reach coherent?
 - > Still support end to end FEC for some options?
 - > Optimize gain, latency, power and implementation burden for chosen FECs
 - > While minimizing the overall number of FEC options

CMOS Roadmap

Comparison of Lane Data Rate and Node Label Timelines

- > The upper data (blue) shows evolution of electrical lane data rate over time.
- The lower data (red) shows the evolution of node label over time.
- Current designs for 100 Gb/s per lane are in 7 nm and are moving to 5 nm.
- ➤ 3 nm and 2.1 nm will be available when 200 Gb/s per lane is standardized.
- ➤ The node label (halving every 3.4 years) is progressing faster than the electrical lane rate (doubling every 3.9 years).

Source - Matt Brown, Huawei Canada

DSP Architecture Advances

Analog

High Speed ADC enables DSP Architectures

DSP

FFE, DFE, and MLSD for stronger EQ

Coding

Leverage DSP soft information for higher coding gain FEC

Reported implementations:

- "A 400 Gb/s Transceiver for PAM-4 Optical Direct-Detect Applications in 16nm FinFET," ISSCC, 2019
- "A 460mW 112 Gb/s DSP-Based Transceiver with 38 dB Loss Compensation for Next-Generation Data Center in 7nm FinFET Technology," ISSCC, 2020
- > "FPGA Investigation on Error-Floor Performance of a Concatenated Staircase and Hamming Code for 400G-ZR Forward Error Correction," OFC, 2018

Courtesy of: Ilya Lyubomirsky, Inphi George Zimmerman, CME Consulting John D'Ambrosia, Futurewei Technologies

Beyond 400 GbE - Leveraging 100 Gb/s Signaling

Industry Efforts - 100 Gb/s Signaling

- > IEEE 802.3
 - Standards
 - > IEEE P802.3bs 400GBASE-DR4 (4 x 100 Gb/s)
 - > IEEE P802.3cd 100GBASE-DR (1 X 100 Gb/s)
 - > In Development
 - > IEEE P802.3ck 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force
 - > IEEE P802.3cu 100 Gb/s and 400 Gb/s over SMF at 100 Gb/s per Wavelength Task Force
 - > IEEE P802.3db 100 Gb/s, 200 Gb/s, and 400 Gb/s Short Reach Fiber Task Force
 - > IEEE P802.3ct 100 Gb/s over DWDM Systems Task Force
- > Other Industry Efforts
 - INCITS T11 (Fibre Channel) FC-PI-8, 128GFC (112 Gb/s electrical and optical interface specifications)
 - > OIF Common Electrical Interface 112 Gb/s Efforts
 - > 100G Lambda MSA (100 Gb/s optical interfaces specifications)

800 Gb/s Industry Activities

> Ethernet Technology Consortium

- https://ethernettechnologyconsortium.org/
- "The 800 GbE specification introduces a new media access control (MAC) and Physical Coding Sublayer (PCS)"

> QSFP-DD800 MSA

- http://www.qsfp-dd800.net/
- > Rev 1.0 released Mar 6 2020

> OSFP

> 800G Pluggable MSA

- https://www.800gmsa.com/
- ➤ 800G PSM8 specification (Draft 1.0) Specification covering cost effective 8x100G transmission over at least 100m

Source- Nathan Tracy, TE Connectivity

Example: 800 Gb/s OSFP Capacity Module

- OSFP Form Factor
- > Targeting 2km:
 - > 8 x 100 GbE with MPO-16
 - > 2 x 400 GbE with CS connector
- > OIF CEI-112G-VSR interface
- > 0~70degC 18W, 10~60C 17W
- > 7nm DSP inside

Source - Osa Mok, Innolight

Beyond 400 GbE - Leveraging 200 Gb/s Signaling

Potential for Technology Reuse

Reuse of signaling rate technologies developed for higher Ethernet rates enables existing lower speed Ethernet rate specifications (AUI, -KR, -CR, -SR, - DR, -FR, -LR, -ER)

Image courtesy of David Piehler, Dell Technologies

- > 32 400 Gb/s capacity ports
- Can be configured to support32 400 GbE ports
- Can be configured to support128 100 GbE ports

"It has been my experience at Google that we have used optical and copper modules to support different configurations of a given port, including applications that require the maximum capacity of the single port."

Cedric Lam, Google

Beyond 100 Gb/s Research is Underway

- > S. Yamaoka et al., "239.3-Gbit/s net rate PAM-4 transmission using directly modulated membrane lasers on high-thermal-conductivity SiC" in Proceedings of European Conference on Optical Communication (ECOC), 2019/9.
- > X. Pang et al., 200 Gbps/lane IM/DD Technologies for Short Reach Optical Interconnects, https://core.ac.uk/download/pdf/289286726.pdf, 2019/04/24.
- W. Heni et al., Ultra-High-Speed 2:1 Digital Selector and Plasmonic Modulator IM/DD Transmitter Operating at 222 GBaud for Intra-Datacenter Applications, https://www.osapublishing.org/jlt/abstract.cfm?URI=jlt-38-9-2734, 2020/9.
- S Lange et al., 100 GBd Intensity Modulation and Direct Detection with an InP-based Monolithic DFB Laser Mach-Zehnder Modulator, Journal of Lightwave Technology, https://www.researchgate.net/publication/319259046_100_GBd_Intensity_Modulation_and_Direct_Detection_withan InP-based Monolithic DFB Laser Mach-Zehnder Modulator, 2017/8.
- E. Sentieri et al., "12.2 A 4-Channel 200Gb/s PAM-4 BiCMOS Transceiver with Silicon Photonics Front-Ends for Gigabit Ethernet Applications," 2020 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 2020, pp. 210-212, doi: 10.1109/ISSCC19947.2020.9062992.
- > T. Wettlin et al., "Beyond 200 Gb/s PAM4 transmission using Tomlinson-Harashima precoding," 45th European Conference on Optical Communication (ECOC 2019), Dublin, Ireland, 2019, pp. 1-4, doi: 10.1049/cp.2019.0834.
- Net 212.5 Gbit/s Transmission in O-band With a SiP MZM, One Driver and Linear Equalization, Maxime Jacques1, Zhenping Xing1, Alireza Samani1, Xueyang Li1, Eslam El-Fiky1, Samiul Alam1, Olivier Carpentier1, Ping-Chiek Koh2, David Plant1; 1McGill Univ., Canada; 2Lumentum, USA. OFC-2020, Post deadline paper Th4A.3

Industry Efforts Targeting Signaling Beyond 100 Gb/s

- > IEEE 802.3
 - > IEEE P802.3cw 400 Gb/s over DWDM Systems
- > ITU-T
 - Recommendation ITU-T G.698.2, to include 200 Gb/s and 400 Gb/s application codes
- > OIF
 - > 400ZR
 - https://www.oiforum.com/wp-content/uploads/OIF-400ZR-01.0_reduced2.pdf
 - CEI 224G Development Project
 - https://www.businesswire.com/news/home/20200826005437/en/ OIF-Approves-CEI-224G-Development-Project-Reviews-Co-packaging

800 Gb/s Single Wavelength Transmission

The Future of Coherent is emerging

- Successful trial of 800 Gb/s single-wave transmission over
 950 km - https://bit.ly/2Wdkh8e
- Platform supporting 200 Gb/s to 800 Gb/s single-carrier https://bit.ly/2KLpW05
- "Industry's first 800G tunable ultra-high-speed optical module" https://bit.ly/2yTYNFK
- "Verizon says it has successfully transmitted an 800-Gb/s wavelength on its live network" -https://bit.ly/3d2GX1M

Potentially applicable to Duplex SMF and DWDM systems!

SUMMARY

- > Path to Beyond 400 GbE exists
- Leverage 100 Gb/s building blocks
- > 800 GbE building blocks and example available now
- Plausible implementations for today and next generation
- > 800 Gb/s over a single wavelength for duplex SMF and DWDM systems is emerging now

BEYOND 400 GbE WHY NOW?

Presented by John D'Ambrosia

CONSIDERING THE NEXT ETHERNET RATE STANDARD

Source: https://bit.ly/802d3bwa2

The Work Needs to Begin...

SUMMARY

- Bandwidth
 - Underlying factors all indicate continued growth
 - Exponential growth continues!
- New bandwidth generating applications constantly being introduced
 - Mobile (5G) / Video
 - > Artificial Intelligence
 - Virtual / Augmented Reality
- Today's world stressing the need for connectivity and bandwidth
- Last two "Higher Speed" efforts (from CFI to standard ratification)
 - > 40 / 100 GbE 3 years, 11 months
 - > 200 / 400 GbE 4 years, 9 months
- There is some time between standard ratification and product introduction
 - > The bandwidth problem will only continue to grow
- We need to begin the process to study the problem!
- Big questions to consider
 - Next speed or speeds?
 - What physical layer specifications?

Proposed Study Group Chartering Motion

Approve the formation of a Beyond 400 Gb/s Ethernet Study Group to consider development of a Project Authorization Request (PAR) and Criteria for Standards Development (CSD) responses for:

- 1. Beyond 400 Gb/s Ethernet;
- 2. Physical Layers specifications for existing Ethernet rates based on any signaling rate used for (1).

Supporters (Page 1 of 3)

John	Abbott	Corning Incorporated	John	DeAndrea	II-VI Inc
Venu	Balasubramonian	Marvell	Claudio	DeSanti	Dell Technologies
Thananya	Baldwin	Keysight Technologies	Mike	Dudek	Marvell
Vipul	Bhatt	II-VI Incorporated	Dave	Estes	Spirent
Mark	Bordogna	Intel	John	Ewen	Marvell
Ralf-Peter	Braun	DEUTSCHE TELEKOM AG	Vince	Ferretti	Corning Incorporated
Paul	Brooks	VIAVI Solutions	Ali	Ghiasi	Ghaisi Quantum LLC
Matt	Brown	Huawei Technologies Canada	Joel	Goergen	Cisco
Leon	Bruckman	Huawei	Bob	Grow	RMG Consulting
John	Calvin	Keysight	Chin	Guok	Esnet
Steve	Carlson	High Speed Design	Mark	Gustlin	Cisco
Derek	Cassidy	IET / ICRG	Rubio	Han	China Mobile
Frank	Chang	Source Photonics	Xiang	Не	Huawei
Ayla	Chang	Huawei	Adam	Healey	Broadcom
Jacky	Chang	Hewlett Packard Enterprise	Howard	Heck	Intel
David	Chen	AOI	Briah	Holden	Kandou
Gang	Chen	Baidu	Tom	Huber	Nokia
Weiqiang	Cheng	China Mobile	Jeff	Hutchins	Ranovus
Mabud	Choudhury	OFS	Kazuhiko	Ishibe	Anritsu
Robert	Coenen	InterOptic	Hideki	Isono	Fujitsu Optical Components
John	D'Ambrosia	Futurewei, U.S. Subsidiary of Huawei	Tom	Issenhuth	Huawei
Eli	Dart	ESnet	Ken	Jackson	Sumitomo Electric Device Innovations USA

Supporters (Page 2 of 3)

John	Johnson	Broadcom	Larry	McMillan	Western Digital
Lokesh	Kabra	Synopsys	Rich	Mellitz	Samtec
Mark	Kimber	Semtech	Guangcan	Mi	Huawei
Mike	Klempa	Amphenol-TCS	Osa	Mok	Innolight
Kishore	Kota	Inphi	Inder	Monga	Esnet
Cedric	Lam	Google	Andy	Moorwood	Keysight Technologies
Dominic	Lapierre	EXFO	Dale	Murray	LightCounting
Greg	Le Cheminant	Keysight Technologies	Ray	Nering	Cisco
David	Lewis	Lumentum	Shawn	Nicholl	Xilinx
Jon	Lewis	Dell Technologies	Gary	Nicholl	Cisco
Junjie	Li	China Telecom	Paul	Nikolich	Independent
Mike	Li	Intel	Mark	Nowell	Cisco
Robert	Lingle	OFS	David	Ofelt	Juniper
Hai-Feng	Liu	HG Genuine	Kumi	Omori	NEC
Kent	Lusted	Intel	Tom	Palkert	Samtec
Ilya	Lyubomirsky	Inphi	Earl	Parsons	CommScope
Valerie	Maguire	Siemon	Vasu	Parthasarathy	Broadcom
Jeff	Maki	Juniper	Jerry	Pepper	Keysight Technologies
David	Malicoat	Malicoat Networking Solutions	Phong	Pham	EPCOMM Inc.
Eric	Maniloff	Ciena	David	Piehler	Dell Technologies
Flavio	Marques	Furukawa Electric	Rick	Pimpinella	Panduit
Brett	McClellan	Marvell	Rick	Pimpinella	Panduit

Supporters (Page 3 of 3)

Rick	Rabinovich	Keysight Technologies	Jeff	Twombly	Credo Semiconductor
Sridhar	Ramesh	Maxlinear	Ed	Ulrichs	Intel
Adee	Ran	Intel	Paul	Vanderlaan	UL LLC
Olindo	Savi	Hubbell	Prasad	Venugopal	Arista Networks
Ed	Sayre	North East Systems Associates, Inc.	Xinyuan	Wang	Huawei
Steve	Sekel	Keysight Technologies	Winston	Way	Neophotonics
Steve	Shellhammer	QualComm	Markus	Weber	Acacia Communications
Kapil	Shrikhande	Innovium	Yangling	Wen	Futurewei
Priyank	Shukla	Synopsys	Tom	Williams	Acacia Communications
Scott	Sommers	Molex	James	Withey	Fluke
Yoshiaki	Sone	NTT	Chongjin	Xie	Alibaba
Massimo	Sorbara	GlobalFoundries	Shuto	Yamamoto	NTT
Ted	Sprague	Infinera	Zhiwei	Yang	ZTE
Henk	Steenman	AMS-IX	James	Young	Commscope
Rob	Stone	Facebook	Xu	Yu	Huawei
Steve	Swanson	Corning Incorporated	Hua	Zhang	Hisense Broadband
John	Swanson	Synopsys	Во	Zhang	Inphi
Bharat	Tailor	Semtech	Wenyu	Zhao	CAICT
Tomoo	Takahara	Fujitsu	Xiang	Zhou	Google
Jim	Theodoras	HG Genuine USA	Yan	Zhuang	Huawei
Nathan	Tracy	TE Connectivity	George	Zimmerman	CME Consulting
Viet	Tran	Keysight Technologies	Pavel	Zivny	Tektronix

STRAW POLLS

Call-for-interest

- Should a Study Group be formed for "Beyond 400 Gb/s Ethernet"
 - > YES
 - > No
 - > Abstain

> Call Count

Participation

- > I would participate in the "Beyond 400 Gb/s Ethernet" Study Group in IEEE 802.3
 - > Tally:
- ➤ I believe my affiliation would support my participation in the "Beyond 400 Gb/s Ethernet" Study Group in IEEE 802.3
 - > Tally: (Results to be processed after call)

Future work

- > Ask 802.3 WG for approval
- > If approved, request formation of "Beyond 400 Gb/s Ethernet" Study Group by 802 EC
- > If approved,
 - Creation of Study Group page /reflector
 - ➤ First Study Group meeting [teleconference?] anticipated for Jan 21 Interim

THANK YOU!

APPENDIX: BACKUP SLIDES

LINK AGGREGATION WILL NOT SUFFICE

Courtesy, David Ofelt, Juniper.

- Problem: Need to scale the Network (density & cost)
- Temporary Solution: Link Aggregation
- Pros:
 - Addresses bandwidth requirements between releases of faster links
- Cons:
 - Non-deterministic performance
 - Fastest flow limited to individual link speed
 - Growth in operational & management issues
- Other bonding mechanisms, e.g. FlexE, fixes performance limitations but not density issues
- Faster links address these issues <u>and they will</u> be LAGGed or bonded!

HIGH PERFORMANCE COMPUTING

WORLD INTERNET USAGE

Total World	As of 3/31/19 ¹	As of 12/31/19 ³	Increase	As of 7/20/20 ²	Increase
Population	7,716,223,209	7,796,615,710	80,392,501	7,796,949,710	80,726,501
Internet Users	4,383,810,342	4,574,150,134	190,339,792	4,833,521,806	449,711,464
Internet Penetration	57%	59%	2%	62%	5%

Top 20 Countries	As of 3/31/19 ¹	As of 12/31/19 ³	Increase		
Population	5,187,499,066	5,233,377,837	45,878,771		
Internet Users	3,117,533,898	3,241,273,512	123,739,614		
Internet Penetration	60%	62%	2%		

Rest of World	As of 3/31/19 ¹	As of 12/31/19 ³	Increase		
Population	2,565,984,143	2,563,237,873	-2,746,270		
Internet Users	1,229,027,955	1,332,876,622	103,848,667		
Internet Penetration	48%	52%	4%		

Observations

- Only 8 countries had at least 80% connectivity
- $\Rightarrow \approx 450$ million users increase
- ❖ 5% increase in Total World Internet Penetration since Mar 31 2019
- 1. IEEE 802.3 BWA, PART II
- 2. HTTPS://WWW.INTERNETWORLDSTATS.COM/STATS.HTM
- 3. HTTPS://WWW.INTERNETWORLDSTATS.COM/TOP20.HTM

GLOBAL DEVICES / CONNECTIONS AVERAGE PER CAPITA

Number of connected devices per capita is growing The average traffic per user is growing at a much faster rate

GLOBAL DEVICE CONNECTION GROWTH (AVERAGE)

North America					We	stern Eu	ırope	A	Central & Eastern Europe				ре
(Mb/s)	2017	2022	CAGR		(Mb/s)	2017	2022	CAGR		(Mb/s)	2017	2022	CAGR
Fixed Broadband	43.2	94.2	16.9%		Fixed Broadband	37.9	76.0	14.9%		Fixed Broadband	32.8	46.7	7.3%
Wi-Fi	37.1	83.8	17.7%	5	Wi-Fi	25.0	49.5	14.6%	5	Wi-Fi	19.5	32.8	11.0%
Cellular	16.3	42.0	20.8%		Cellular	16.0	50.5	25.8%		Cellular	10.1	26.2	21.0%
Latin America					Middl	e East &	Africa			F	sia Paci	fic	
								2400	7		7		04.00
(Mb/s)	2017	2022	CAGR	2	(Mb/s)	2017	2022	CAGR		(Mb/s)	2017	2022	CAGR
Fixed Broadband	11.7	28.1	19.2%		Fixed Broadband	7.8	20.2	21.0%		Fixed Broadband	46.2	98.8	16.4%
Wi-Fi	9.0	16.8	13.3%	3	Wi-Fi	6.2	11.2	12.6%		Wi-Fi	26.7	63.3	18.8%
Cellular	4.9	17.7	29.3%	,	Cellular	4.4	15.3	28.3%		Cellular	10.6	28.8	22.1%

GLOBAL INTERNET TRAFFIC BUSY-HOUR VS AVERAGE HOUR

IMPACT OF "DEFINITION" ON IP VIDEO GROWTH

Growth in the adoption of HD and UHD dominate IP video traffic

DATA CENTER CAPACITY CONTINUES TO GROW

Switch Capacity Shipments in Eb/s**

- * Percent of annual server shipments categorized by speed of the attached controllers and adapters
- ** Annual port capacity shipped on Data Center Ethernet Switches measured in exabits per second

ESTIMATION OF MOBILE TRAFFIC

Global mobile traffic is expediential and may even be underestimated

Source: Report ITU-R M.2370-0: IMT traffic estimates for the years 2020 to 2030, https://www.itu.int/pub/R-REP-M.2370-2015